
Proof of the Shafarevich conjecture

Rebecca Bellovin

We have an isogeny of degree ℓh φ : B1 → B2 of abelian varieties over K
isogenous to A. We wish to show that h(B1) = h(B2). By filtering the kernel
of φ, we may assume that ℓ annhilates the kernel of φ, which we call G. We
define the following four representations over Z/ℓZ:

Vℓ = Tℓ(B1)/ℓ · Tℓ(B1) ∼= B1[ℓ](K)

Ṽℓ = Indπ̃
π(Vℓ)

Wℓ = G(K) ⊆ Vℓ

W̃ℓ = Indπ̃
π(Wℓ) ⊆ Ṽℓ

Note that the isogeny φ : B1 → B2 extends to an isogeny B0
1 → B0

2 between
the connected components of their Néron models, so G extends to a finite
flat group scheme G over OK .

Since Wℓ is an h-dimensional representation with Z/ℓZ coefficients and [K :
Q] = m, ∧mh(W̃ℓ) ⊆ ∧mh(Ṽℓ) is a one-dimensional representation of π̃ = GQ.
We will call this character χ : GQ → (Z/ℓZ)×.

Because our abelian varieties have semistable reduction over K, the GK-
representation Vℓ is unipotent at places of K away from ℓ, so ∧h is unramified
away from ℓ. The determinant of the induced representation Vℓ will pick
up inertia, though, so we need to twist by εh, where ε : GQ → {±1} ⊆
(Z/ℓZ)× is the character arising from the determinant of induction of the
trivial representation: ∧m Indπ̃

π(Z). This is because Indπ̃
π(Z

⊕h) ∼= Indπ̃
π(Z)

⊕h

Now we have a character of GQ, so we can use concrete computations in class
field theory to study it. Let L be the finite extension of Q defined by ker(χ ·
εh). Class field theory (more precisely, the Kronecker-Weber theorem) tells us
that every abelian extension of Q is contained in Qcyc :=

⋃
p ∪nQ(ζpn). Each

tower ∪nQ(ζpn) is totally ramified at p and unramified elsewhere, so since
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L/Q is unramified away from ℓ, L ⊂ ∪nQ(ζℓn). By degree considerations
([L : Q]|ℓ − 1), L ⊂ Q(ζℓ). And since Q(ζℓ)/Q is a cyclic extension, this
implies that χ · εh is some power of the cyclotomic character.

We can use Raynaud’s results on finite flat group schemes to compute d. In
fact, we claim that if ℓd = #s∗Ω1

G/OK
, then χ · εh = χd

0.

Recall that if G is the generic fiber of a finite flat group scheme killed by
p over a strictly henselian local ring R of mixed characteristic (0, p), of low

ramification, then the Galois action arising from G is τ
v(dG/R)/#G
p . Here τp is

the canonical tame character τ : It → F×
p .

In our case, we start life with a (global) representation ρ of GK , arising from
a finite flat group scheme killed by p over a number ring OK , and we are
interested in the determinant of its induction to GQ.

Note that the restriction of the cyclotomic character χ0 : GQ → (Z/ℓZ)× to
the inertia subgroup Iℓ of GQℓ

is τℓ, so to compute d it suffices to look at
χ · εh|Iℓ .
We started with a representation Wℓ arising from the generic fiber of a finite
flat group scheme G over OK . Inducing Wℓ to GQ corresponds to taking
the Weil restriction G ′ := ResOK/Z G, and restricting to Iℓ corresponds to
basechanging G to R, the strict henselization of Zℓ. The character ε dies
upon being restricted to Iℓ because K/Q is unramified at ℓ, so we will not
have to worry about it. In other words, the character χ · εh we are interested
in is the determinant of the representation on the generic fiber of G ′

R =
ResR⊕m/R(G ⊗OK

R⊕m). We can write G ⊗OK
R⊕m as

∐m
i=1 Gi, where each Gi

is a finite flat group scheme over R, each one corresponding to an embedding
of OK in R. Then G ′

R = G1 ×R · · · ×R Gm.

Raynaud’s results then tell us that the determinant character is τ
v(d

G′
R

/R)/ℓmh

ℓ ,
so we need to compute v(dG′

R/R)/ℓ
mh and compare it with #s∗Ω1

G/OK
. Recall

that the quantity v(dG/R)/#G is additive in exact sequences. Thus,

v(dG′
R/R)/ℓ

mh =
∑

v(dGi/R)/ℓ
h

On the other hand, we can use Brandon’s corollary 2.6 to see that |s∗Ω1
G/OK

| =∏
v|ℓ #s∗Ω1

Gv/OK,v
, and we can use corollary 2.10 to see that |s∗Ω1

Gv/OK,v
|#Gv =
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|OK,v/ d(Gv/OK,v)|. Thus, if |s∗Ω1
G/OK

| = ℓd,

d =
∑

v

fvv(d(Gv/OK,v))/#Gv

But the valuation of the discriminant is preserved under unramified base
change, so by going up to the strict henselisation R of Zℓ, we get

d =
∑

i

v(d(Gv/OK,v))

as desired.

Now we know that χ · εh = χd
0, so χd

0(Frobp) = ±pd is a zero of Pmh(T )
modulo ℓ. But we chose N so large that no ℓ > N divides Pi(±pj) for

0 ≤ i ≤ 2gm

0 ≤ j ≤ gm

j 6= 1

2
i

so we must have d = mh/2.

Finally, Faltings’s lemma 5 implies that

h(B2) = h(B1) +
1

2
log(deg φ)− 1

[K : Q]
log(#s∗(Ω1

G/OK
))

= h(B1) +
1

2
h · log(ℓ)− 1

m
d · log(ℓ)

= h(B1)

Now that we have proved the Shafarevich conjecture, we record the following
important corollary.

Corollary 0.1. Fix a number field K, a set of places S of K, and an integer

g. Then there are finitely many isomorphism classes of complete curves C of

genus g with good reduction outside of S.

Proof. For such a curve C, we claim that the Jacobian of C is a principally
polarized abelian variety with good reduction outside of S. Let v be a place
of K not in S, and let C/OK,v be a smooth model of C. Then PicC/OK,v

is

3



an abelian scheme over OK,v whose generic fiber is the Jacobian of C. Thus,
Jac(C) has good reduction outside S.

It is a classical fact that Jacobians of curves over an algebraically closed field
are canonically principally polarized. The same fact for curves over more
general bases is Proposition 6.9 in Mumford’s GIT.

Now Torelli’s theorem says that a curve over a perfect field is determined (up
to isomorphism) by the isomorphism class of its Jacobian as a principally
polarized abelian variety (together with the polarization!). Thus, we have an
injective map

{Genus g curves over K with good reduction outside S} → {Principally polarized abelian varieties

We would like to say that the right-hand side is finite, so that the left-hand
side is finite as well. The Shafarevich conjecture implies that there are only
finitely many abelian varieties with good reduction outside of S admitting
a principal polarization, but we still need to know there are only finitely
many pairs (A, φ), where A is such an abelian variety and φ is a principal
polarization. This is provided by theorem 3.1 of Lecture 14 [ed: check this
reference].

1 Parshin’s Trick

Our strategy for deducing the Mordell conjecture from the Shafarevich con-
jecture is known as Parshin’s trick. We fix a smooth projective curve X over
a number field K, with good reduction outside S. We will find a finite exten-
sion K1/K and a finite set of places S1 of K1. Then to each K-rational point
x of X we will associate a smooth projective curve Y (x) over K1 with good
reduction outside of S1, together with a morphism Y (x) → XK1

of bounded
degree, branched only over x.

First of all, there is a non-trivial étale cover p : X1 → X of degree m > 2,
where X1 has good reduction outside of S. This can be seen by embedding
X →֒ Jac(X) (we assume X has a K-rational point; otherwise, we are done)
and pulling back by [2] : Jac(X) → Jac(X) (we add the places over 2 to S).
After making a finite extension of K, we may assume that the 2-torsion of
Jac(X) is split, so that X1/X is Galois.

Next, note that for any x ∈ X(K), the fiber f−1(x) is split over a finite
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extension of K of degree at most m and unramified outside S. Take the
compositum of all such fields and call it K1. By Hermite’s theorem, [K1 :
K] < ∞.

To construct Y (x), we fix some y ∈ X1(K1) in the fiber over x and let
D = p−1(x)−y, a divisor of degree m−1. Then let A/K1 be the generalized
Jacobian of (X1, D). That is, it is Pic0 of the curve obtained from X1 by
scrunching D to a single K1-rational point. Using y, we can embed X1 −D
in A and pull back by multiplication by 2 on A to get an étale morphism
Y ′(x) → X1 − D. Then there is a smooth proper curve Y (x) → X1, étale
over X1 away from D.

Now we have a smooth curve Y (x) over K1, with a map down to X1 such
that the map down to XK1

is branched only at x. On the other hand, if S1

is a set of places of K1 (including the places over 2) such that X and X1

have proper smooth models over OK1,S1
and the morphism between them

extends to an étale morphism, we can run the same construction using the
generalized Jacobian for a model X1 of X1 over OK1,S1

to get a curve Y ′(x)
over OK1,S1

which has an étale map down to X1 rD.

Proposition 1.1. The multiplication by 2 map in the generalized Jacobian

[2] : Pic0X′
1
/R → Pic0X′

1
/R is finite.

Proof. There is a lemma of Deligne and Rapoport [ed. insert actual reference]
which says that to prove finiteness of a flat quasi-finite morphism, it is enough
to check that it has constant fibral degree.

In our case, note that we constructed the curve C by scrunching a horizontal
divisor of degree m−1, and our divisor is actually split. Thus, by [ref Néron
Models], Pic0C/OK1,S1

on both the generic fiber and the special fiber is an
extension of an abelian variety of by an affine piece; the scrunched curve
is semistable, so there is no unipotent piece. The dimension of the abelian
variety and the rank of the affine piece depend only on the divisor being
scrunched.

Given a commutative algebraic group G over a perfect field, if we write the
Chevalley decomposition

0 → T × U → G → A → 0

then multiplication by 2 on G respects this decomposition. Then it is easy
to see that [2] : G → G is a morphism of degree 2dimT · 2dimA.
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In our case, since the pieces of PicC/OK1,S1
have the same dimension for each

fiber, we are done.

Now that we know Y ′(x) is finite étale over X1 − D, we know that Y ′(x) is
open in its normalization Y over all of X1. Then any bad points of Y are
codimension 2 and happen over D.

Proposition 1.2. For X1 and Y as above, Y is smooth over OK1,S1

Proof. First we note that we may assume that Y is an abelian Galois cover
of X1. This is because the 2-torsion of Pic is split over a base field extension
of degree at most 2dimT · 2dimA. Furthermore, this extension is unramified,
because 2 6 |v. There are only finitely many such extensions of K1, so we can
retroactively build them into K1 without affecting our finiteness statements.

Let x1 be a closed point of D, and let Sx1
be the local ring of X1 at that point.

Then Sx1
is a 2-dimensional regular local ring, and we can pull back the entire

set-up to Sx1
. We write Yrx1

= SpecT , and since normalization commutes
with localization, we are in a position to apply Abhyankar’s lemma.

Abhyankar’s lemma (as given in Freitag-Kiehl, A I.11) tells us that if m is
a maximal ideal of T (corresponding to a putatively bad point of Y) and t
is a local parameter for x1 on the base, then T sh

m
= Ssh

x1
[ e
√
t]. Here e is the

ramification degree. In our case, the ramification group must be a 2-group,
hence prime to the residue characteristic. But then we can simply compute
the module of relative differentials, and since smoothness at a point can be
checked after passing to the strict henselizations of the local rings, we see
that Y is smooth over OK1,S1

.

The upshot is that for each rational point x of X , we have constructed a
smooth projective curve Y (x) over XK1

with good reduction outside S1 (not
depending on x), and the morphism Y (x) → XK1

branched only over x.
Moreover, the degree of this morphism is at most 2g(X1) ·m, so the genus of
Y (x) is bounded. By Corollary 0.1, there are only finitely many isomorphism
classes of such curves Y (x), so it only remains to show that for specified
curves X and Y of genus at least 2, there are only finitely many non-constant
morphisms Y → XK1

. This is known as de Franchis’s theorem, and we give
a proof based on the Hilbert scheme.
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Lemma 1.3. Let X and Y be projective curves over a number field K, and

let C ⊂ X ×K Y be the graph of a morphism Y → X. Then the Hilbert

polynomial of C is

Proof. Let LX ,LY be very ample line bundles embedding X and Y in projec-
tive space, respectively. Then pr∗1LX ⊗pr∗2LY gives an embedding of X×K Y
in projective space, and its restriction L := pr∗1LX ⊗ pr∗2LY |C to C embeds
C in projective space.

To compute the Hilbert polynomial of C as a closed subscheme ofX×KY , we
need to know χ(nL). But Riemann-Roch tells us that χ(nL) = n · deg(L)−
g + 1, where g is the genus of C, which is the same as the genus of Y , so
really we only need to compute the degree of L. This is not difficult:

deg(L) = deg(pr∗1LX |C) + deg(pr∗2LY |C) = d · degLX + deg(LY )

The last equality follows because pr1|C : C → X is a degree d morphism and
pr2|C : C → Y is a degree 1 morphism.

Thus, the space of degree d morphisms Y → XK1
is a particular component

of the Hilbert scheme of closed subschemes of XK1
×K1

Y , and therefore
finite type over K1. To conclude that there are actually only finitely many
morphisms Y → XK1

, it suffices to show that the tangent space at a point
of this space is zero-dimensional. Here is where we will use that the genus of
X is at least 2.

Proposition 1.4. For fixed projective curves X and Y , the space of degree

d morphisms Y → X is zero-dimensional.

Proof. Let f : Y → X be such a morphism. The tangent space at f is given
by Def(f), the set of deformations of f to Y ⊗K[ε] → X⊗K[ε]. To give such
a morphism f ′ is the same as giving a morphism f ′# : OX [ε] → (f∗OY )[ε]
which agrees with f# modulo ε. This, in turn, is the same as giving an OX

derivation OX → f∗OY , so we have

Def(f) = DerOX
(OX , f∗OY ) = HomOX

(Ω1
X/K , f∗OY )

= H0(X, TX/K ⊗ f∗OY ) = H0(Y, f ∗TX/K

Since X has genus at least 2, its tangent bundle has negative degree and
there are no sections.
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