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1 Galois action

1.1 Review of tame ramification

Recall the notion of tame ramification for a discretely-valued henselian field
K with residue characteristic p > 0: a finite extension L/K is said to be
tamely ramified if it is separable and the extension of residue fields is sepa-
rable with ramification degree coprime to p. Hence, tameness is preserved in
towers and inherited by subextensions, so it is reasonable to define a general
algebraic extension L/K to be tame when every finite subextension is tame
(so L/K is separable).

We want to describe totally tame finite extensions in general, and for this
purpose it will be convenient to pull down results from the more familiar
complete case, so we now review the relationship between the Galois theory
of K and its completion K̂ (which is implicitly used all the time in number
theory when we identify decomposition groups in Galois groups of global
fields with Galois groups of completions). For a finite separable extension
L/K, the valuation on K uniquely extends to one on L. Indeed, the module-
finite integral closure OL in L of the discrete valuation ring OK of K is a
semi-local Dedekind domain, whence it must be local because the henselian
property of OK implies that OL is a direct product of local rings). It follows

that K̂ ⊗K L is a field, and in fact it maps isomorphically to the completion
L̂ of L relative to the valuation on L, so L̂/K̂ is separable with the same
degree as L/K.

Brian Conrad heavily rewrote the section on tame ramification.
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If L/K is Galois then we get a natural injective map

Gal(L/K) →֒ Aut(L̂/K̂),

forcing L̂/K̂ to be Galois, and then restriction to L defines an inverse map.
This equality of Galois groups has two important consequences. First, by the
Galois correspondence and the equalities among Galois groups, the functor
F  F̂ from the category of intermediate fields in L/K (using K-maps) to

the category of intermediate fields in L̂/K̂ (using K̂-maps) is an equivalence.

That is, every intermediate field on the complete side has the form F̂ for
a unique intemediate field F in L/K, with HomK(F

′, F ) → HomK̂(F̂
′, F̂ )

a bijection. The second property is that every finite separable extension L′

of K̂ has the form L̂ for some finite separable extension L/K. Indeed, by
separability and Krasner’s Lemma, we can choose a primitive element and
slightly change its minimal polynomial to have coefficients in K, and then
the finite separable extension L/K defined by this polynomial has completion
that is a field dense in L′ and hence equal to L′ due to closedness of all
subfields over the complete K̂ (over which L′ is finite).

To summarize, the functor L  K̂ ⊗K L is a degree-preserving equivalence
from the category of separable algebraic extensions of K to the category of
separable algebraic extensions of K̂ (with this functor identified with comple-
tion on finite-degree extensions). In this sense, the Galois theories of K and

K̂ are identified, and the absolute Galois groups of these two fields (relative
to compatible choices of separable closures) are canonically isomorphic (as
topological groups). Since the completion process has no effect on residue
fields or ramification on finite-degree extensions, this correspondence respects
unramifiedness, tameness, and total ramifiedness. Hence, from the familiar
complete case (as in Serre’s book “Local Fields”) we obtain:

Proposition 1.1. A finite extension L/K with maximal unramified subex-
tension K ′/K is tamely ramified if and only if L = K ′( m

√
a) for an integer

m not divisible by p and a ∈ K ′×.

It follows from this that if L/K and L′/K are finite separable extensions
inside of a common extension and L/K is tame, then so is LL′/L′. Thus, the
composite of two tamely ramified extensions (inside a fixed separable closure
K/K) is again tamely ramified, so there is a unique maximal tamely ramified
extension Kt of K (inside of K). This uniqueness forces Kt/K to be a Galois
extension.
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Now we specialize to the case where K has strictly henselian (discrete) val-
uation ring R, so K has separably closed residue field and no non-trivial
unramified extensions. Thus, the Galois group Gal(K/K) coincides with the
inertia group I of K. We have a short exact sequence

1→ Ip → Gal(K/K)→ It → 1

where It, the tame inertia group, is Gal(Kt/K). Every finite quotient of
It has order prime to p, because it corresponds to a finite totally tamely
ramified extension of K. So Ip is the maximal pro-p subgroup of Gal(K/K),
and is called the wild inertia group.

We will be primarily interested in the tame inertia group, and its representa-
tions. We can use the proposition above to study the structure of the tame
inertia group. For m prime to p and u a unit of R, K contains all mth roots
of u (because R is strictly henselian). Thus, the only tame extension of K
of degree m is obtained by adjoining mth roots of the uniformizer π of R.
In other words, there is a unique tame extension of K of degree m, and it
is Galois over K with Galois group canonically isomorphic to µm(K). The

surjection It → µm(K) corresponding to this isomorphism is σ 7→ σ(π1/m)

π1/m for
any mth root of π. This isomorphism is independent of the choice of π and
is compatible with change in m in the sense that if n|m, the diagram

It −−−→ µm(K)∥∥∥
y

It −−−→ µn(K)

commutes, where the righthand arrow is given by ζ 7→ ζm/n. Thus, we have
a canonical isomorphism It ∼= lim←−(m,p)=1

µm(K) =
∏

ℓ 6=pZℓ(1). In particular,

It is abelian, and even pro-cyclic.

1.2 Galois representations

Suppose R is a henselian discrete valuation ring with residue characteristic
p > 0, and let G be an étale commutative K-group scheme killed by p. Then
G(K) is a finite-dimensional Fp-vector space, equipped with a linear Galois
action. Conversely, given a finite-dimensional Fp-linear Galois representation
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ρ : Gal(K/K)→ Aut(V ), there is a commutative finite étaleK-group scheme
killed by p whose K-points recover ρ.

Now suppose that G is simple as a K-group scheme (i.e., nontrivial with no
nontrivial proper K-subgroup scheme), or equivalently that ρ : Gal(K/K)→
Aut(V ) is irreducible as an Fp-linear representation. Consider the restric-
tion of ρ to the wild inertia group Ip. The subspace of Ip-invariants V

Ip

is non-trivial, because Ip is a pro-p group acting (continuously) on a finite-
dimensional Fp-vector space (cf. lemma IX.1.2 in Local Fields). Because Ip is
normal in Gal(K/K), V Ip is stable under the action of the full Galois group.
But then the irreducibility of V as a Gal(K/K) representation implies that
V Ip is all of V . This in turn implies that ρ|Ip is trivial, which justifies our
earlier disregard of wild inertia.

If R is actually strictly henselian, then ρ is now an irreducible representation
of the commutative group It. Now we use a form of Schur’s lemma to say that
the commutant of ρ in Aut(V ) is a finite field F , and since It is commutative,
ρ(It) is contained in the commutant of ρ. Thus, It acts by homotheties on
the F -vector space V . And since V is an irreducible representation, it is 1-
dimensional as an F -vector space. This implies that G is actually an F -line.

Proposition 1.2. Suppose R is strictly henselian, with fraction field K, and
let G be a commutative finite group scheme over K killed by a power of p. If
G is étale or multiplicative and {Gi}i∈I is the family of successive quotients of
a Jordan-Hölder filtration for G, then there is a family of finite fields {Fi}i∈I
such that Gi is an Fi-line.

Proof. We begin by filtering G by powers of p, so that we may assume that G
is killed by p itself. Then if G is étale, we can apply the argument above to the
(étale) quotients in a Jordan-Hölder filtration of G. If G is multiplicative,
we can take the Cartier dual to get something étale, apply the preceding
argument, and dualize back.

Corollary 1.3. Suppose R is strictly henselian with e ≤ p− 1, and let G be
a finite flat commutative group scheme over R, killed by a power of p. Then
G has a composition series {Gi}i such that the successive quotients Gi/Gi+1

are Fi-vector schemes for a family of finite fields {Fi}i.

Proof. Let {Gi}i be the composition series on the generic fiber obtained from
the previous proposition, and for each i let Gi be the schematic closure of
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Gi. Then Gi/Gi+1 is a prolongation of Gi/Gi+1, which is an Fi-vector scheme.
Since e ≤ p − 1, we may apply the theorem on prolongations that Melanie
proved to conclude that Gi/Gi+1 is also an Fi-vector scheme.

1.3 Galois actions on F -vector schemes

In this section, we let R be strictly henselian of mixed characteristic (0, p),
and let K be its fraction field. Let F be a finite field of size q = pr.

Suppose that G is an F -line over K, described by the equations

Xp
i = δiXi+1

By combining these equations, we find that K-points of G correspond to
solutions to the equations

Xq
i = aiXi

where ai = δp
r−1

i δp
r−2

i+1 · · · δi+r−1. So for any extension L/K, finding L-points

of G depends on L containing q−1st roots of ai. Note that ai+1 = api /δ
pr−1
i =

api /δ
q−1
i , so if L contains the q − 1st roots of one ai, it contains the q − 1st

roots of all the ai. So all of the K-points of G appear over a tame extension
L/K of degree dividing q − 1.

Thus, the tame inertia group It acts on G(L) by a character of the form

It → µq−1(K)
ψ−→ F×

q

Here the first map is the canonical projection from the structure of tame
inertia, and ψ : µq−1(K)→ F×

q depends on the Galois action on G(L).

In order to better understand this Galois action, we will express ψ in terms of
certain distinguished characters χi : F

×
q → µq−1(K). Namely, every character

χ : F×
q → µq−1(K) can be extended to a map Fq → R by sending 0 to 0.

We will say that χ is distinguished if the composition Fq → R → k is a
homomorphism of fields (Raynaud calls these characters “fundamental”).
Note that if χ is a distinguished character, the distinguished characters are
precisely those of the form χp

h
for some integer h. Since χp

r
= χ with r

minimal as such, we can view the distinguished characters as a set {χi}i∈Z/rZ
such that χi+1 = χpi . We define ψi : µq−1(K)→ F× to be the inverse of χi.

When Melanie derived the equations for G, that is, K[Xi]/(X
p
i −δiXi+1), she

actually chose the Xi so that F acts on them via distinguished characters,
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that is, [λ]Xi = χi(λ)Xi for λ ∈ F× and [λ] the endomorphism of the Hopf
algebra induced by the action of λ on G.
Now we can prove the following result relating the constants δi to the Galois
action:

Theorem 1.4. With the above hypotheses on R, K, and G, the Galois
group Gal(K/K) acts on the F -vector space G(L) via the character It →
µq−1(K)

ψ−→ F×, where ψ = ψ
v(δi)
i+1 · · ·ψ

v(δi+r−1)
i+r .

Proof. Note first of all that if x ∈ G(L) given by x = (x1, . . . , xr) (where xi
is the value of Xi at x), then [λ]x = (χi(λ)xi) for λ ∈ F . This is because x
can be given by solutions xi ∈ L to the r equations Xq

i = aiXi, satisfying
xi+1 = xpi /δi, so applying [λ]Xi = χi(λ)Xi yields a new point χi(λ)xi.

On the other hand, if σ ∈ It, σ(x) = (jq(σ)
v(ai)xi) by the definition of the

Galois action on L = K( q−1
√
a1, . . . ,

√
q − 1ar).

Combining these two facts, we see that the action of σ ∈ It on G(L) coincides
with the action of ψi(jq(σ))

v(ai) ∈ F× on the ith component. This element
of F× is actually independent of i, since the conditions v(ai+1) = pv(ai) −
(q − 1)v(δi) and ψ

p
i+1 = ψi imply

ψi+1(jq(σ))
v(ai+1) = ψi+1(jq(σ))

pv(ai)−(q−1)v(δi) =
ψi(jq(σ))

v(ai)

ψi+1(jq(σ))(q−1)v(δi)

= ψi(jq(σ))
v(ai)

(using that ψq−1 = 1 for any character ψ of µq−1(K)).

This theorem lets us read off the structure constants of an F -line over K
from the Galois representation on the geometric points. We can use it to
give a criterion for an F -line over K to extend to an F scheme over R.

Theorem 1.5. Suppose R is a strictly henselian discrete valuation of mixed
characteristic (0, p). Let G be an F -line over K associated to a character
ψ = ψni

i+1 · · ·ψ
ni+r−1

i+r : µq−1(K)→ F×. Then G has a prolongation if and only
if 0 ≤ nj ≤ e for all j.

Example 1.6. Let R = Zp and let E/R be an elliptic curve with supersingular
reduction. Let G/R be the p-torsion E [p], and let G be its generic fiber. Then
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G is simple, because any subgroup scheme H would have étale or multiplica-
tive schematic closure, contrary to G having supersingular reduction (to see
this, let H be the schematic closure of H , so that G is an Fp-line. Then by
the classification, H = SpecR[X ]/(Xp − δX), where v(δ) = 0 or 1; in the
first case, H is étale, and in the second case, H is dual to something étale).

To study the action of inertia onG(Qp), we replace R with its strict henseliza-
tion, so thatG is an F -line, where F = Fp2, and so G is as well. Then we know
(from the classification) that G = SpecR[X1, X2]/(X

p
1 − δ1X2, X

p
2 − δ2X1)

where 0 ≤ v(δi) ≤ 1. If v(δ1) = v(δ2) = 0, then G is étale, which is false. If
v(δ1) = v(δ2) = 1, then G is multiplicative, again contrary to our assumptions
(as the torsion-levels of an elliptic curve over any ring are Cartier self-dual).
Thus, v(δ1δ2) = 1 and G = SpecR[X ]/(Xp2 − pX) (we can change coordi-
nates to get rid of a unit) and the character ψ : µp2−1(K) → F× associated
to the character describing the action of inertia It → µp2−1(K)→ F× is the
inverse to one of the two distinguished characters ψ1,ψ2. If we change the
choice of F -action through composition with the p-power automorphism of
F then we swap which of the ψi’s appears. In this sense, neither of the two
tame characters is “preferred”.

In addition, we know from the theory of abelian varieties that the full Galois
group GQp acts on the determinant of p-torsion by the cyclotomic character.
In other words, if we look at the Galois representation ρ : GQp → GL2(Fp)
on p-torsion, we know its determinant and we know its restriction to inertia
ρ|I . So we actually know ρ up to an unramified quadratic character (which
is “best possible”), since an unramified quadratic twist on the elliptic curve
preserves good reduction and induces the corresponding twist on the Galois
representations.

1.4 Main result

The main result we promised to prove is the following theorem, which de-
scribes the Galois action on the generic fiber of a finite flat group scheme
over a base with low ramification.

Theorem 1.7. Let R be a strictly henselian discrete valuation ring with
mixed characteristic (0, p) and fraction field K, and let τp denote the tame
character τp : It → µp−1(K)→ F×

p .
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Let G be the generic fiber of a commutative R-group scheme G which is finite,
flat, and killed by p. Let dG/R denote the discriminant ideal of G over R.

If e ≤ p− 1 then #G divides v(dG/R) and Gal(K/K) acts on det(G) via the

character τ
v(dG/R)/#G
p .

To clarify the meaning of the discriminant ideal, note that the coordinate
ring A of G is a finite free R-module, so it is well-posed to define dG/R =
(det(TrA/R(ajak))) where {aj} is any ordered R-basis for A. This makes
sense more generally for any ring extension that is locally free of finite rank
as a module.

We will need a few properties of discriminant ideals later, so we record them
here:

• dA′⊗AA′′ = (dA′/A)
n′′

(dA′′/A)
n′

where A′ and A′′ are free of respective
ranks n′ and n′′ as A-modules. This lets us computes discriminants of
fiber products G ′ ×G G ′′.

• If we have a tower of rings A/A′/R, each finite free over the next,

then dA/R = d
rkA′ A

A′/R NmA′/R(dA/A′). This will let us compute relative

discriminants of R-group schemes G → G ′.

Before we begin the proof of the theorem, we will calculate the discriminant
dG/R.

Lemma 1.8. Suppose G is an F -line, with Hopf algebra

A = R[X1, . . . , Xr]/(X
p
i − δiXi+1).

Then we have dG/R = (
∏r

i=1 δi)
pr
. In particular, v(dG/R) = pr

∑r
i=1 v(δi), so

v(dG/R)

pr
is an integer.

Proof. Define A1 = R[X1]/(X
q
1 − a1X1), and inductively define

Ai := Ai−1[Xi]/(δi−1Xi −Xp
i−1),

so that A = Ar. In other words, we have a rising chain of rank-q R-sublattices
of A.
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We start by computing dA1/R. The basis for R[X1]/(X
q
1 − a1X1) over R will

be {1, X1, . . . , X
q−1
1 }, so that Tr(Xk

1 ) will be zero unless q − 1 divides k, in

which case it will be q if k = 0 and (q − 1)a
k/(q−1)
1 if k 6= 0. So to compute

dA1/R we need to compute the determinant of the matrix with an q in the
upper left corner, (q − 1)a1 on the anti-diagonal, and (q − 1)a21 in the lower
right corner. This determinant is easily seen to be (q − 1)q−1aq1, and since
(q − 1, p) = 1, dA1/R = (aq1).

Next we note that, starting with {1, X1, . . . , X
q−1
1 } and working inductively,

to obtain an R-basis of Ai from the basis for Ai−1, we simply divide the basis
elements which are multiples of Xpj

i−1, 1 ≤ j ≤ pr−i+1 − 1, by δji−1 (and there
are pi−1 of each of these). Since δi−1 ∈ R, Tr(δiXk

1 ) = δiTr(X
k
1 ) for any k.

Therefore,

dAi/R = dAi−1/R /(δ
pi−1(1+2+···+(pr−i+1−1))
i−1 )2

= dAi−1/R /δ
pi−1pr−i+1(pr−i+1−1)
i−1

= dAi−1/R /δ
pr(pr−i+1−1)
i−1

Recall that a1 = δp
r−1

1 δp
r−2

2 · · · δr =
∏r

i=1 δ
pr−i

i , so

dA1/R = (

r∏

i=1

δ
pr−i(pr)
i ).

So to calculate dG/R, we need to divide
∏r

i=1 δ
pr−i(pr)
i by

∏r−1
i=1 δ

pr(pr−i−1)
i . We

get

dG/R =

(
r∏

i=1

δp
r

i

)
=

(
r∏

i=1

δi

)pr

We also describe the behavior of the discriminant in exact sequences of finite
flat group schemes (which is where we need to allow the base to be the
product of local rings).

Proposition 1.9. Suppose we have an exact sequence 0→ G ′ → G → G ′′ of
finite flat group schemes over R of orders n′, n, and n′′ (so n = n′n′′). Then
dG/R = (dG′/R)

n′′

(dG′′/R)
n′

. In particular, v(dG/R)/#G = v(dG′/R)/#G ′ +
v(dG′′/R)/#G ′′, so the integrality property of v(dG/R)/#G holds if it does for
the other two terms.
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Proof. We have an isomorphism G×RG ′ ∼= G×G′′G given by (g, g′) 7→ (g, gg′).
We will take discriminants of both sides.

By our basic properties of discriminants, we have dG×RG′/R = (dG′/R)
n(dG/R)

n′

and dG×G′′G/G′′ =
(
(dG/G′′)n

′
)2
, so

dG×G′′G/R = (dG′′/R)
n′2

NmG′′/R(dG×G′′G/G′′)

= (dG′′/R)
n′2

NmG′′/R

(
(dG/G′′)2n

′
)

Moreover, dG/R = (dG′′/R)
n′

NmG′′/R(dG/G′′), so the right side is actually

(dG′′/R)
−n′2

(dG/R)
2n′

.

Thus, we have

(dG′/R)
n(dG/R)

n′

= (dG′′/R)
−n′2

(dG/R)
2n′

(dG′/R)
n(dG′′/R)

n′2

= (dG/R)
n′

Then extracting n′ roots, we get

(dG′/R)
n′′

(dG′′/R)
n = dG/R

Now we can prove the theorem.

Proof. If G is actually an F -line, we know that the Galois group Gal(K/K)
acts on G(K) via the tame character

It → µq−1
ψ−→ F×,

where ψ = ψ
v(δi)
i+1 · · ·ψ

v(δi+r−1)
i+r . More precisely, this character describes the

Galois action on the 1-dimensional F -vector space G(K). But we can also
view it as giving the Galois action on the r-dimensional Fp-vector space
G(K). Taking the determinant of the action is the same as composing with
the norm map NmF/Fp.
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We find that the Galois action on the 1-dimensional Fp-vector space detG(K)

is given by the composition It → µq−1(K)
NmF/Fp(ψ)−−−−−−→ F×

p where

NmF/Fp(ψ) = ψ · ψp · · ·ψpr−1

=
r−1∏

k=0

(
ψ
v(δi)
i+1−k · · ·ψ

v(δi+r−1)
i+r−k

)
since ψpi = ψi−1

= (ψi+1 · · ·ψi+r)v(δi)+···v(δi+r−1)

To check that the composition It → µq−1
ψi+1···ψi+r−−−−−−→ F×

p is actually the char-
acter τp : It → µp−1 → F×

p , consider (ψi+1 · · ·ψi+r)(ζ) for ζ ∈ µq−1(K):

(ψi+1 · · ·ψi+r)(ζ) = NmF/Fp ψi+1(ζ) = ψi+1(ζ
1+p+···+pr−1

) = ψi+1(ζ
(q−1)/(p−1))

In other words, in the diagram

It −−−→ µq−1(K)
ψi+1···ψi+r−−−−−−→ F×

p∥∥∥
y

∥∥∥

It −−−→ µp−1(K)
ψi+1−−−→ F×

p

the right-hand square commutes. Here the middle arrow is raising elements of
µq−1(K) to the power q−1

p−1
. The composition along the bottom is τp, because

there is only one distinguished character of F×
p . But we know the left-hand

square commutes, from our earlier study of the structure of the tame inertia

group, so It → µq−1
ψi+1···ψi+r−−−−−−→ F×

p is actually the character τp.

Thus, we have shown that the Galois action on det(G) coincides with the

action of τ
v(δi ···δi+r−1)
p if G is an F -vector scheme. Combining this with

lemma 1.8, we are done in this case.

In the general case, we may filter G so that the successive quotients Gi are
Fi-vector schemes for suitable finite fields Fi. Then it is enough to check
how the Galois action on det(G) and 1

#G
v(dG/R) behave in exact sequences.

Proposition 1.9 showed that 1
#G
v(dG/R) is additive in exact sequences, so we

only need to check that the Galois action on det(G) is multiplicative in exact
sequences.
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So suppose we have an exact sequence 1 → G ′ → G → G ′′ → 1, and let ρ′,
ρ, and ρ′′ denote the corresponding Galois representations on G′(K), G(K),
and G′′(K). Then we have the exact sequence of Galois representations

0→ G′(K)→ G(K)→ G′′(K)→ 0

and abstract properties of the top exterior product show that

det ρ = det ρ′ · det ρ′′

as desired. This may be seen more concretely by writing ρ =
(
ρ′ ∗

0 ρ′′

)
and

taking the determinant.

12


