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Abstract. We use the theory of trianguline (φ,Γ)-modules over pseu-
dorigid spaces to prove a modularity lifting theorem for certain Galois
representations which are trianguline at p, including those with charac-
teristic p coefficients. The use of pseudorigid spaces lets us construct
integral models of the trianguline varieties of [BHS17], [Che13] after
bounding the slope, and we carry out a Taylor–Wiles patching argu-
ment for families of overconvergent modular forms. This permits us to
construct a patched quaternionic eigenvariety and deduce our modular-
ity results.

1. Introduction

The Fontaine–Mazur conjecture predicts that representations of Galois groups
of number fields which are sufficiently nice should come from geometry. In
practice, the way one proves this is by proving so-called automorphy lifting
theorems, relating the Galois representations of interest to Galois represen-
tations already known to have the desired properties.

In this context, if ρ : GalF → GLn(Qp) is the representation, “sufficiently
nice” includes a condition on the local Galois group at p called being geo-
metric. In the present paper, motivated by a question of Andreatta–Iovita–
Pilloni [AIP18], we consider a characteristic p analogue of this conjecture.
There is no definition of “geometric” for a Galois representation with positive
characteristic coefficients, but we replace it with the condition trianguline:

Theorem. Assume p ≥ 5, and let L be a finite extension of Fp((u)). Let
ρ : GalQ → GL2(OL) be an odd continuous Galois representation unramified
away from p such that the (φ,Γ)-module Drig(ρ|GalQp

) is trianguline with
regular parameters. Assume moreover that the reduction ρ is modular and
satisfies certain additional technical hypotheses. Then ρ is the twist of the
Galois representation corresponding to a point on the extended eigencurve
XGL2.

The eigencurve X rig
GL2

was originally constructed by Coleman–Mazur, and it
is a rigid analytic space whose points correspond to overconvergent modular
forms. Points corresponding to classical eigenforms (of varying weight and
level) are dense, so we can think of it as a moduli space of p-adic modular
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forms. Each point of the eigencurve has a Galois representation attached, but
Kisin [Kis03] showed that the Galois representations at non-classical points
are not geometric at p. Instead, they are trianguline (though he did not use
this terminology; it was introduced subsequently by Colmez). A converse
was proved by Emerton [Eme11, Theorem 1.2.4] when the coefficients are
p-adic.

Given a p-adic Galois representation ρ, there is an associated object Drig(ρ)
called a (φ,Γ)-module; at the expense of making the coefficients more compli-
cated, the Galois representation can be captured as the action of a semi-linear
operator φ together with the action of a 1-dimensional p-adic Lie group Γ.
Then even if ρ is irreducible, it is possible for Drig(ρ) to be reducible. Kisin
showed that this happens in small neighborhoods of classical points on the
eigencurve; if ρx is the Galois representation attached to a point x, there is
an exact sequence

0→ D1 → Drig(ρx)→ D2 → 0

where D1 and D2 are rank-1 (φ,Γ)-modules. There is a basis element e1 of
D1 such that φ acts on e1 by the Up-eigenvalue at x and Γ acts on e1 trivially.
This construction was extended over (a normalization of) the eigencurve in
separate work of [KPX14] and [Liu15].

The eigencurve is equipped with a map wt : X rig
GL2
→ W rig to weight space,

which we may view as the disjoint union of p − 1 rigid analytic open unit
disks. The existence of Galois representations attached to eigenforms means
it is also equipped with a morphism X rig

GL2
→ Grig

m ×
∐
ρRρ, where the Rρ are

Galois deformation rings (more precisely, deformation rings of pseudochar-
acters), and Grig

m corresponds to the eigenvalue of the Hecke operator Up.
The triangulation results of [Kis03], [KPX14], and [Liu15] mean that we can
combine these two maps to get a morphism

XGL2 →
∐
ρ

Xψ,κ,rig
tri,ρ

to a moduli space of trianguline Galois representations (here the decorations
ψ and κ simply mean we are fixing the determinant and the parameters of
the triangulation). The result of [Eme11] then shows that this morphism
surjects onto certain components.

More recently, the construction of the eigencurve has been extended to mixed
characteristic by Andreatta–Pilloni–Iovita [AIP18], [AIP16] and Johansson–
Newton [JN16], using Huber’s theory of adic spaces instead of Tate’s theory
of rigid analytic spaces. These authors construct pseudorigid spaces con-
taining characteristic 0 eigenvarieties as open subspaces, with non-empty
characteristic p loci.

In previous work, we generalized the construction of (φ,Γ)-module to families
of Galois representations with pseudorigid coefficients [Bel23b] and showed
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that the triangulation of the eigencurve extends to the boundary character-
istic p points [Bel23a]. This yields an analogous morphism XGL2 →

∐
Xψ,κ

tri,ρ

of pseudorigid spaces. In the present paper, we use that machinery to prove
a modularity result for Galois representations trianguline at p, characterizing
the image in many components.

The proof rests on the Taylor–Wiles patching method, as reformulated in [Sch18].
This is the source of the aforementioned technical hypotheses on ρ (which
amount to assumptions about the image of ρ being sufficiently big). How-
ever, there are a number of technical complications. For example, to carry
out some preliminary reductions, we first prove a version of the Jacquet–
Langlands correspondence on eigenvarieties extending the construction of [Bir19],
and we characterize the image of the cyclic base change morphism XGL2 /Q →
XGL2 /F of [JN19a]. The latter uses the construction of an auxiliary “Gal(F/Q)-
fixed” eigenvariety, which may be of independent interest. This permits us
to transfer the problem to overconvergent quaternionic modular forms over
a cyclic totally real extension of Q.

The modules of quaternionic automorphic forms we patch are those con-
structed in [JN16]. We construct trianguline deformation rings which act
on them, and we patch by introducing ramification at additional primes.
But the construction of trianguline deformation rings is delicate, because in
general triangulations of (φ,Γ)-modules do not interact well with integral
structures on the corresponding Galois representation. Thus, we crucially
use the pseudorigid theory of triangulations (and not just the rigid analytic
theory) to ensure that we can construct an integral quotient of a Galois defor-
mation ring whose analytic points are trianguline, with Frobenius eigenvalues
bounded by a fixed slope.

This leads to a further difficulty, which is that it is difficult to study the
components of the trianguline deformation ring directly. Instead, we patch
families of overconvergent automorphic forms, which lets us compare the Ga-
lois representation we are interested in with “nearby” potentially Barsotti–
Tate representations which are known to be automorphic. Along the way, we
construct local pieces of a patched quaternionic eigenvariety X ∞

D× , together
with a morphism to a trianguline variety and a patched module of overcon-
vergent modular forms. We note that it is only possible to patch families of
overconvergent automorphic forms because we constructed an integral model
of the trianguline variety; we know almost nothing about its structure away
from nice points in the analytic locus, but understanding it better would be
very interesting. We also hope to glue these local patched modules in future
work.

We have not attempted to work in maximum generality. In particular, it
should be possible to relax the ramification condition and prove an overcon-
vergent modularity lifting theorem for certain totally real fields. However,
this would require constructing and studying a cyclic base change morphism
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for more general extensions of number fields. We expect that it is possible to
construct these morphisms for the middle-degree eigenvariety over a totally
real field, which would lead to stronger trianguline modularity theorems in
characteristic 0. But we were forced to assume the degree of the cyclic ex-
tension was prime to p to characterize the image of a base change morphism
in positive characteristic, so additional work would be required to strengthen
our results in positive characteristic.

We further remark that our “big image” condition on the residual Galois
representation is stronger than the standard one. This is to ensure that we
have access to the necessary cohomological vanishing theorems, to permit us
to work with middle-degree eigenvarieties.

The work of Breuil–Hellmann–Schraen [BHS17] constructs a similar patched
eigenvariety for unitary groups, using completed cohomology rather than
overconvergent cohomology. It would be extremely interesting to relate these
two constructions.

We now describe the structure of this paper. We begin by recalling the
theory of trianguline (φ,Γ)-modules and their deformations; this permits us
to construct and study pseudorigid trianguline varieties (generalizing those
of [Che13] and [BHS17]). We compute the dimension of these pseudorigid tri-
anguline varieties with fixed determinant and weight, and we show that they
have an integral model after bounding the slopes of the rank-1 constituents.

We then turn to the automorphic theory we will need. We prove that so-
called twist classical points are very Zariski dense in the eigenvariety XD× ,
which permits us to interpolate the Jacquet–Langlands correspondence to
extended eigenvarieties and permits us to conclude that XD× is reduced
(extending the results of [Bir19] and [Che05]). We also study the cyclic base
change morphism XGL2 /Q → XGL2 /F of [JN19a]; when F is totally real
and [F : Q] is prime to p, we show that x ∈ XGL2 /F is in the image if and
only if it is fixed by Gal(F/Q). To do this, we construct a “Gal(F/Q)-fixed
eigenvariety” and show that classical points are dense in it.

Finally, we turn to the patching argument. We show that our modules
of integral overconvergent automorphic forms are projective, and we show
that we can add certain kinds of level structure. Then using the standard
Taylor–Wiles patching construction, we construct a patched module with
the support we expect. This permits us to deduce the desired modularity
statement, by interpolation from crystalline points in characteristic 0. This
last step requires the results of [Kis09a], which in turn requires the p-adic lo-
cal Langlands correspondence of [Eme11]. Thus, while our argument applies
to characteristic 0 Galois representations, it does not replace the trianguline
modularity result of that paper.

Notation. We fix some running notation and hypotheses. In section 2 we
assume that p ≥ 3, because we only developed the theory of (φ,Γ)-modules
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over pseudorigid spaces in that situation. In sections 3 and 5, we assume
p ≥ 5; we need this hypothesis to construct eigenvarieties (and the Jacquet–
Langlands and cyclic base change morphisms between them) at tame level
1, and later to apply Taylor–Wiles patching.

We normalize class field theory so that it sends uniformizers to geometric
Frobenius, and we normalize Hodge–Tate weights so that the cyclotomic
character has Hodge–Tate weight −1.
If X is a group isomorphic to X0 × Z⊕r

p × Z⊕s, where X0 is a finite group,
we let X̂ := Hom(X,Gad

m ) denote the functor R 7→ Homcts(X,R
×).

Acknowledgments. I would like to thank A. Caraiani, T. Gee, J. Newton,
and V. Pilloni for many helpful conversations, as well as useful comments
on earlier versions of this paper. I would also like to thank the anonymous
referee for reading this paper extremely carefully and making many helpful
comments.

2. Trianguline varieties and Galois deformation rings

2.1. Galois deformation rings. Let E/Qp be a finite extension, with ring
of integers OE , uniformizer ϖE , and residue field F, and let G be a profinite
group satisfying Mazur’s condition Φp. The two cases we will be most inter-
ested in are G = GalK and G = GalF,S , where K is a finite extension of Qp,
and F is a number field, and S is a set of places of F .

Suppose we have a continuous homomorphism ρ : G → GLd(F). Then
we may construct the univeral framed deformation ring R□ρ , which pro-
represents the functor

A⇝ {ρ : G→ GLd(A) | ρ ≡ ρ (mod mA)}

on the category of complete local noetherian OE-algebras with residue field
F, of lifts of ρ, that is, deformations of ρ together with a basis. If EndG(ρ) =
F (for example, if ρ is absolutely irreducible), we additionally have the uni-
versal (unframed) deformation ring Rρ parametrizing deformations of ρ.

If R is a complete local noetherian OE-algebra with maximal ideal mR and
finite residue field, and ψ : GalK → R× is a continuous character such that
det ρ = ψ mod mR, there is a quotient R ⊗̂R□ρ ↠ R□,ψρ parametrizing lifts
of ρ with determinant ψ. Indeed, there is a homomorphism Rdet ρ → R□ρ
given by the determinant map, and the choice of ψ defines a homomorphism
Rdet ρ → R; then R□,ψρ = R ⊗̂Rdet ρ

R□ρ . If EndG(ρ) = F, there is similarly
a quotient R ⊗̂Rρ ↠ Rψρ parametrizing deformations of ρ with determinant
ψ.

Now we specialize to the arithmetic situations of interest. Let K/Qp be a
finite extension, and assume that Hom(K,E) has cardinality [K : Qp]. Then
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by [BIP21, Corollary 3.37], R□ρ is a complete intersection, and by [BIP21,
Corollary 4.21] the irreducible components of SpecR□ρ are in bijection with
the irreducible components of SpecRdet ρ. More precisely, if µ := µp∞(K)
denotes the p-power roots of unity in K×, local class field theory identifies it
with a subgroup of GalabK ; by [BIP21, Lemma 4.1] Rdet ρ is a power series ring
over OE [µ], so its irreducible components are in bijection with characters
χ : µ → O×

E . There are quotients R□ρ ↠ R□,χρ parametrizing lifts of ρ
whose determinant restricted to µ (via the Artin map) agrees with χ, and
by [BIP21, Corollary 4.5, Corollary 4.19] the rings R□,χρ are normal domains
and complete intersections. In particular, R□ρ is reduced.

Let F be a number field and let Σp := {v | p}. If ρ : GalF → GLd(F) is
a continuous representation and v is a place of F , we let ρv denote ρ|GalFv

.
Suppose that ρ is absolutely irreducible, and let S be a finite set of places
of F containing Σp and the infinite places such that ρ is unramified outside
S. Then we let Rρ,S denote the universal deformation ring parametrizing
deformations unramified outside of S, and we let R□ρ,S denote the universal
deformation ring whose A-points are deformations ρA of ρ unramified outside
of S, together with bases for ρA|GalFv

for each v ∈ Σp. We also let R□ρ,loc :=
⊗v∈ΣpR□ρv .

If ψ : GalF → R× is a continuous character as above, we let

Rψρ,S := R ⊗̂
Rdet ρ,S

Rρ,S

R□,ψρ,S := R ⊗̂
Rdet ρ,S

R□ρ,S

R□,ψρ,loc := R ⊗̂
Rdet ρ,loc

R□ρ,loc

For any place v ∈ Σp, restriction from GalF,S to GalFv defines a homomor-
phism R□ρv → R□ρ,S , and so we obtain homomorphisms

R□ρ,loc → R□ρ,S

and

R□,ψρ,loc → R□,ψρ,S

We can relate our local and global deformation rings more precisely:

Lemma 2.1.1. Suppose that p ∤ d. Let h1 denote the dimension (as an
F-vector space) of

ker

H1(GalF,S , ad
0(ρ))→

∏
v∈Σp

H1(GalFv , ad
0(ρv))


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let δF := dimFH
0(GalF,S , ad ρ), and for v ∈ Σp let δv := dimFH

0(GalFv , ad ρv).
Then R□,ψρ,S can be topologically generated over R□,ψρ,loc by g := h1+

∑
v∈Σp δv−

δF elements.

Proof. Let mloc denote the maximal ideal of R□,ψρ,loc and let mS denote the
maximal ideal of R□,ψρ,S . We need to compute the relative tangent space(
mS/(m

2
S ,mloc)

)∗ of R□,ψρ,S /mloc. But the maximal ideal of R is contained in
mloc, so we may assume that ψ is constant, and the result follows from [Kis09b,
Lemma 3.2.2]. □

2.2. Deformations of trianguline (φ,Γ)-modules. Trianguline (φ,Γ)-
modules are those which are extensions of (φ,Γ)-modules of character type.
More precisely,

Definition 2.2.1. Let X be a pseudorigid space over OE for some finite
extension E/Qp, let K/Qp be a finite extension, and let δ = (δ1, . . . , δd) :

(K×)d → Γ(X,O×
X) be a d-tuple of continuous characters. A (φ,ΓK)-module

D is trianguline with parameter δ if (possibly after enlarging E) there is an
increasing filtration Fil•D by (φ,ΓK)-modules and a set of line bundles
L1, . . . ,Ld such that griD ∼= ΛX,rig,K(δi)⊗Li for all i.

If X = SpaR where R is a field, we say that D is strictly trianguline with
parameter δ if for each i, Fili+1D is the unique sub-(φ,ΓK)-module of D
containing FiliD such that gri+1D ∼= ΛR,rig,K(δi+1).

As in the characteristic 0 situation treated in [BC09, §2.3], we may define
and study deformations of trianguline (φ,Γ)-modules:

Definition 2.2.2. Let R be a finite extension of Fp((u)) and let D be a fixed
(φ,ΓK)-module of rank d over ΛR,rig,K equipped with a triangulation Fil•D
with parameter δ. Let CR denote the category of artin local Zp-algebras R′

equipped with an isomorphism R′/mR′
∼−→ R. The trianguline deformation

functor DefD,Fil• : CR → Set is defined to be the set of isomorphism classes

DefD,Fil•(R
′) := {(DR′ ,Fil•DR′ , ι)}/ ∼

where DR′ is a (φ,ΓK)-module over ΛR′,rig,K , Fil•DR′ is a triangulation,
and ι : R⊗R′ DR′

∼−→ D is an isomorphism which also defines isomorphisms
R⊗R′ FiliDR′

∼−→ FiliD.

One of the consequences of the proof of [Bel23b, Proposition 5.1] is that when
d = 1, DefD,Fil• is formally smooth. As in the characteristic 0 situation,
the same is true for general d, so long as the parameter satisfies a certain
regularity condition. Note that the regularity condition in here is slightly
different than in characteristic 0; the additional characters avoided in the
statement of [BC09, Proposition 2.3.10] do not make sense in characteristic
p.
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Proposition 2.2.3. Suppose the parameter δ of Fil•D satisfies the property
that δiδ−1

j ̸= χcyc◦NmK/Qp
for any i < j. Then DefD,Fil• is formally smooth.

Proof. The proof is essentially identical to that of [BC09, Proposition 2.3.10],
but we sketch it here for the convenience of the reader. We proceed by
induction on d; the case d = 1 follows from the proof of [Bel23b, Proposition
5.1], so we assume the result for trianguline deformations of (φ,Γ)-modules
of rank d − 1. Let I ⊂ R′ be a square-zero ideal. We need to prove that
DefD,Fil•(R

′) → DefD,Fil•(R
′/I) is surjective, so we may factor R′ ↠ R′/I

into a series of small extensions and assume that I is principal and ImR′ = 0.
By the inductive hypothesis, we may find a trianguline deformation D′ of
Fild−1D over ΛR′,rig,L. By twisting, we may assume that δd is trivial. Then
we need to show that the natural mapH1

φ,Γ(D
′)→ H1

φ,Γ(Fil
d−1) is surjective.

But the cokernel of this map is H2
φ,Γ(I ⊗R′/mR′ Fil

d−1D(δ−1
d )) = I ⊗R′/mR′

H2
φ,Γ(Fil

d−1D(δ−1
d )), which is 0 by assumption and [Bel23b, Corollary 4.11].

□

In order to build moduli spaces of trianguline (φ,Γ)-modules, we will use
moduli spaces of characters, as in [Bel23a, §2.3]. If G is a commutative p-
adic Lie group and G′ ⊂ G is a compact subgroup such that G/G′ is free and
finitely generated, then we have Ĝ′ := SpaZp[[G

′]] and the pseudorigid spaces
Ĝ′an and Ĝan := Spa(Z[G/G′],Z) ×Z Ĝ′an. If X is a pseudorigid space, we
also have the pseudorigid space ĜX , which represents the functor

Y ⇝ Homcts(G,O(Y ))

on the category of adic spaces over X.

In particular, if K is a finite extension of Qp, we will be interested in K̂×an

and (̂K×)d
an

for d ≥ 1:

Definition 2.2.4. We let T := K̂×an
, and for any d ≥ 1, we write T d :=

(̂K×)d
an

.

We see that K̂×an ∼= Gad
m×ZSpaZp[[O

×
K ]]an, and T d ∼= Gad,d

m ×ZSpaZp[[(O
×
K)d]]an.

Since O×
K is compact, SpaZp[[O×

K ]]an is a quasi-compact pseudorigid space;
it has a finite cover {Ui := SpaRi} by affinoid subspaces, and Gm,Ui is a
rising union of relative annuli CUi,h := SpaRi

〈
uhT, uhT−1

〉
.

If K = Qp, then Q̂×
p

an
has connected components indexed by the elements

of µp−1, each of which is isomorphic to (SpaZp[[Zp]])
an ×Gad

m .

Remark 2.2.5. In the pseudorigid setting (unlike the classical rigid an-
alytic setting), it is not true that Ĝ1 ×G2

an ∼= Ĝ1
an
× Ĝ2

an
. Indeed,

SpaZp[[T1, T2]]
an consists of all valuations which do not vanish on all three
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of p, T1, T2. But
SpaZp[[T1]]

an ×Zp SpaZp[[T2]]
an

also excludes valuations vanishing at both p and T1 (or both p and T2). In
particular, T d is not a product of copies of T .

Definition 2.2.6. We say that a continuous character κ : K× → O(X)× is
regular if for all maximal points x ∈ X, the residual character κx : K× →
k(x)× is not of the form

• α 7→ α−i or α 7→ αi+1|α| for i ∈ Z
Hom(K,k(x))
≥0 (if x is a characteristic

0 point), or
• trivial or χcyc ◦NmK/Qp

(if x is a characteristic p point).

The space of regular parameters T dreg ⊂ T d is the Zariski-open subspace
whose X-points are given by parameters δ : (K×)d → O(X)× such that
δiδ

−1
j : K× → O(X)× is regular for all j > i.

Consider the functor S□d on pseudorigid spaces defined via

X ⇝ {(D,Fil•D, δ, ν)}/ ∼
where D is a trianguline (φ,ΓK)-module with filtration Fil•D and regular
parameter δ ∈ T dreg, and ν is a sequence of trivializations νi : griD

∼−→
ΛX,rig,K . There is a natural transformation S□d → T dreg given on X-points by

(D,Fil•D, δ, ν)⇝ δ

Exactly as in [Che13, Théorème 3.3] and [HS16, Theorem 2.4], we have the
following:

Proposition 2.2.7. The functor S□d is representable by a pseudorigid space,
which we also denote S□d , and the morphism S□d → T dreg is smooth of relative
dimension d(d−1)

2 [K : Qp].

One proves by induction on d that if D is a trianguline (φ,ΓK)-module
over X with parameter δ ∈ (Treg)d, then H1

φ,ΓK
(D) is a vector bundle over

X of rank d[K : Qp] (the regularity assumption ensures that H0
φ,ΓK

(D) =

H2
φ,ΓK

(D) = 0). Now S□1 = T = T 1
reg, so S□1 is representable and is smooth

of the correct dimension over T 1
reg. Then one may proceed by induction on

d again, and construct S□d as the moduli space of extensions of the univer-
sal (φ,ΓK)-module of character type ΛT ,rig,K(δuniv) by the universal object
Dd−1,univ over S□d−1. For a specified regular parameter δ = (δ1, . . . , δd) ∈
T dreg(X), the fiber S□d |δ is equal to Ext1(ΛX,rig,K(δd), Dd−1,univ|(δ1,...,δd−1)) =

H1
φ,ΓK

(Dd−1,univ|(δ1,...,δd−1)(δ
−1
d )). This is a rank-(d − 1) vector bundle over

X, and the claim follows.

We also introduce variants of S□d with families of fixed determinant and
weights. More precisely, suppose X is a pseudorigid space and we have
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a continuous character δdet : K× → O(X)× and a d-tuple of continuous
characters κ := (κ1, . . . , κd) : O×

K → O(X)×. We say that δdet and κ are
compatible if δdet|O×

K
= κ1 · · ·κd. If δdet and κ are compatible, we consider

the functors S□,δdetd and S□,δdet,κd on pseudorigid spaces over X defined via

Y ⇝ {(D,Fil•D, δ) ∈ S□d (Y ) | δ1 · · · δd = δdet}/ ∼

and

Y ⇝ {(D,Fil•D, δ, ν) ∈ S□d (Y ) | δi|O×
K
= κi for all i, δ1 · · · δd = δdet}/ ∼

Proposition 2.2.8. The functor S□,δdet,κd is representable by a pseudorigid
space over X, which we also denote S□,δdet,κd , and the morphism S□,δdet,κd →
X is smooth and surjective of relative dimension d(d−1)

2 [K : Qp] + d− 1.

Proof. Set Y := (̂O×
K)d

an

. Then there is a morphism T d → Gm,Y , given
by δ 7→

(
δ1|O×

K
, . . . , δd|O×

K
, δ1(ϖK) · · · δd(ϖK)

)
, and it is smooth of relative

dimension d − 1. The choice of δdet and κ define a morphism X → Gm,Y ,
and we have a pullback square

S□,δdet,κd S□d

X Gm,Y

Then the result follows from Proposition 2.2.7. □

Example 2.2.9. In the example of most interest to us, we will take K = Qp,
d = 2, and R = Zp[[T0]], where T0 := T(Zp) for a split maximal torus
T ⊂ GL2 /Zp. Fix an unramified character ψ0 : GalQp → R×. There is a uni-
versal pair of characters λ1, λ2 : Z×

p ⇒ R×, and we set ψ := (λ1λ2χcyc)
−1 ψ0

and κ : (λ−1
2 , (λ1χcyc)

−1). Then the morphism S□2 → SpaRan is the natural

projection S□d → (̂Z×
p )2, composed with taking inverses and swapping fac-

tors. Furthermore, T is 2-dimensional and irreducible (corresponding to a
choice of δ1); fixing the determinant means the remaining degrees of freedom
are the 1-dimensional irreducible space Ẑ×

p (corresponding to the choice of
δ2|Z×

p
), and the generically 1-dimensional space of extensions between them.

We see that in this case, S□,δψ ,κ2 is 4-dimensional, and an A1-torsor over a

dense open subspace of Gad
m × (̂Z×

p )2. Hence it is irreducible.

2.3. Structure of trianguline varieties. Let K/Qp be a finite extension,
and let ρ : GalK → GLd(k) be a continuous representation, where k is a finite
field containing the residue field of K. The fiber product (SpaR□ρ )

an×SpaZp
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T d exists as a pseudorigid space, and it is contained in the fiber product

Gad,d
m ×Z (̂O×

K)d × Spa(R□ρ )
an

(with complement of codimension ≥ 2 if d ≥ 2). Let X□tri,ρ be the Zariski
closure in the latter of the set of maximal points x = {(ρx, δx)}, where ρx is
a (framed) lift of ρ and δx ∈ T dreg(L) is a regular parameter of Drig(ρx).

Let R be a complete local noetherian Zp-algebra with finite residue field.
Fix an d-tuple of characters κ := (κ1, . . . , κd), where κi : O×

K → O(X)× and
X := (SpaR)an, and fix a character ψ : GalK → R×. Over the pseudorigid
space X, a character ψ : GalK → O(X)× corresponds to a rank-1 (φ,Γ)-
module of the form Drig(δψ), for some character δψ : K× → O(X)×. If δψ
and κ are compatible, we may define

X
□,ψ,κ
tri,ρ ⊂ Gad,d

m ×Z (̂O×
K)d × (SpaR□,ψρ )an

to be the Zariski closure of the set of maximal points x = {(ρx, δx)}, where
ρx is a framed lift of ρ with determinant ψ and δx ∈ T dreg(L) is a regular
parameter of Drig(ρx) such that δi|O×

K
= κi.

In order to study the structure of X□tri,ρ and X
□,ψ,κ
tri,ρ , we will need to know

something about the essential image of the functor from Galois represen-
tations to (φ,Γ)-modules. We refer the reader to [Bel23b] for details on
definitions of pseudorigid overconvergent period rings and the construction
of (φ,Γ)-modules in the pseudorigid setting. However, we note here that
ΛR,[0,b],K is the coordinate ring of a closed annulus over SpaR, ΛR,(0,b],K is
the ring of global functions on a half-open annulus over SpaR, and ΛR,rig,K :=
lim←−b→0

ΛR,(0,b],K . As in the work of [CC98] and [BC08], (φ,Γ)-modules at-
tached to Galois representations are constructed over ΛR,[0,b],K for some b > 0
(which depends in subtle ways on the representation).

Lemma 2.3.1. The functor M ⇝ Drig,K(M) from GalK-representations to
their associated (φ,Γ)-modules is formally smooth.

Proof. We need to show that if D is a projective (φ,ΓK)-module over a pseu-
doaffinoid algebraR′, and I ⊂ R′ is a square-zero ideal such that (R′/I)⊗R′D
arises from a family of Galois representations, then D also arises from a fam-
ily of Galois representations. Indeed, we have a short exact sequence

0→ ID → D → (R′/I)⊗R′ D → 0

By assumption, D′ := (R′/I) ⊗R′ D arises from a family of GalK represen-
tations M ′ over R′/I, and since

D′′ := ID ∼= I ⊗R′ D ∼= (R′/ annR′ I)⊗R′/I D
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it arises from a family of GalK representations M ′′ over R′/ annR′ I. Since
D has a model Db over ΛR′,(0,b],K , we have a commutative diagram

0 Λ̃R′,(0,b/p] ⊗R′ D′′ Λ̃R′,(0,b/p] ⊗R′ D Λ̃R′,(0,b/p] ⊗R′ D′ 0

0 Λ̃R′,(0,b] ⊗R′ D′′ Λ̃R′,(0,b] ⊗R′ D Λ̃R′,(0,b] ⊗R′ D′ 0

φ−1 φ−1 φ−1

By construction, Λ̃R′,(0,b]⊗R′D′′ ∼= Λ̃R′,(0,b]⊗
(
Λ̃R′

0,[0,b]
⊗R′

0
M ′′

0

)
and Λ̃R′,(0,b]⊗R′

D′ ∼= Λ̃R′,(0,b] ⊗
(
Λ̃R′

0,[0,b]
⊗R′

0
M ′

0

)
, for some integral models M ′′

0 and M ′
0

(perhaps after localizing on SpaR′ and shrinking b). Therefore, we have
quasi-isomorphisms

[M ′′]
∼−→ [Λ̃R′,[0,b] ⊗R′

0
M ′′

0
φ−1−−→ Λ̃R′,[0,b/p] ⊗R′

0
M ′′

0 ]

∼−→ [Λ̃R′,(0,b] ⊗R′ D′′ φ−1−−→ Λ̃R′,(0,b/p] ⊗R′ D′′]

and

[M ′]
∼−→ [Λ̃R′,[0,b] ⊗R′

0
M ′

0
φ−1−−→ Λ̃R′,[0,b/p] ⊗R′

0
M ′

0]

∼−→ [Λ̃R′,(0,b] ⊗R′ D′ φ−1−−→ Λ̃R′,(0,b/p] ⊗R′ D′]

Then the snake lemma implies that we have an exact sequence

0→M ′′ →
(
Λ̃R′,rig,K ⊗D

)φ=1
→M ′ → 0

of R′-modules equipped with continuous R′-linear actions of GalK , with M ′

finite projective over R′/I and M ′′ ∼= (R′/ annR′ I)⊗R′/IM
′. It follows that

M :=
(
Λ̃R′,rig,K ⊗D

)φ=1
is a projective R′-module of the same rank and

Drig,K(M) = D. □

In [BHS17, §2.2], the authors show that the characteristic 0 locus X□,rigtri,ρ of

the trianguline variety is equidimensional of dimension d2 + [K : Qp]
d(d+1)

2 ,
and generically smooth. We note that if ψ : GalK → O×

E is a crystalline
character, where E/Qp is a finite extension and OE is its ring of integers, then
an identical argument shows that the rigid analytic locus X□,ψ,rigtri,ρ ⊂ X□,ψtri,ρ

is equidimensional of dimension d2− 1+ [K : Qp]
(d+2)(d−1)

2 (indeed, [BIP22,
Theorem 1.2] provides the necessary crystalline lifts with fixed determinant).

Unfortunately, we cannot rule out components of X□tri,ρ or X□,ψtri,ρ supported
entirely in characteristic p, and so to deduce the same result in the pseudo-
rigid setting, we need to repeat a large part of the argument in a neighbor-
hood of the characteristic p fiber.
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Proposition 2.3.2. (1) The space X□tri,ρ (equipped with its underlying
reduced structure) is equidimensional of dimension d2+[K : Qp]

d(d+1)
2 .

(2) If X□,ψ,κtri,ρ is non-empty, it is equidimensional of dimension d2 − 1 +

[K : Qp]
d(d−1)

2 + dimSpaRan.
(3) There is an open subspace Z ⊂ SpaRan such that morphism X

□,ψ,κ
tri,ρ |Z →

Z is equidimensional of dimension d2 − 1 + [K : Qp]
d(d−1)

2 .

Proof. The proofs of the first two parts are very similar to that of [BHS17,
Théorème 2.6], and we will prove them simultaneously. By construction,
there is a universal framed deformation ρuniv : GalK → GLd(R

□
ρ ) of ρ, and

we may pull it back to X□tri,ρ (resp. X□,ψ,κtri,ρ ). Then for any irreducible open
affinoid X ⊂ X → X□tri,ρ (resp. X□,ψ,κtri,ρ ), by [Bel23a, Corollary 5.10] there is
a sequence of blow-ups and normalizations f : X̃ → X and an open subspace
U ⊂ X̃ containing the characteristic p locus such that f∗ρuniv|U is triangu-
line with parameters f∗δ. Shrinking U if necessary, we may assume that f∗δ
is regular (indeed, the pre-image of T dreg in U is open, and by construction
U contains a Zariski dense set of points corresponding to trianguline repre-
sentations with regular parameters). Furthermore, there is a Zariski-dense
and open subspace V ⊂ X□tri,ρ (resp. X□,ψ,κtri,ρ ) such that f−1(V ) ⊂ U and f

defines an isomorphism f−1(V )
∼−→ V .

Over U , the (φ,ΓK)-module D := Drig,K(f∗ρuniv) is equipped with an in-
creasing filtration Fil•D such that griD ∼= ΛU,rig,K(f∗δi)⊗Li for some line
bundle Li on U . We may therefore construct a Gd

m,U -torsor U□ → U trivi-
alizing each of the Li; since U□ carries the data (D,Fil•D, f∗δ, ν), where ν
is the set of trivializations νi : griD

∼−→ ΛU,rig,K(f∗δi), there is a morphism
U□ → S□d .

Let V □ ⊂ U□ denote the pullback of U□ → U to V . We claim that V □ →
S□d is smooth of relative dimension d2. To see this, suppose we have a
pseudoaffinoid algebra R′, a morphism SpaR′ → S□d , and a square-zero
ideal I ⊂ R′ such that the composition SpaR′/I ↪→ SpaR′ → S□d is in
the image of V □. Then there is a ring of definition R′

0 ⊂ R′/I such that
the homomorphism R□ρ → R′/I factors through R′

0; we let M ′
0
∼= R′⊕d

0 be
the pullback of the universal framed deformation to R′

0 and we let M ′ :=
R′/I ⊗R′

0
M ′

0.

By Lemma 2.3.1, there is a GalK-representationM overR′ such that (R′/I)⊗R′

M
∼−→ M ′. It follows that M ′

0 and its basis lift to a free module M0 over
some ring of definition R′

0 ⊂ R′, such that R′ ⊗R′
0
M0 = M . Moreover, M ′

is residually a lift of ρ at every maximal point of SpaR′, so M is as well.
By [WE18, Theorem 3.8], M0 corresponds to a SpaR′

0-point of Spf R□ρ , and
by construction M corresponds to a SpaR′-point of X□tri,ρ deforming M ′.
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Since M ′ corresponds to a Spa(R′/I)-point of the Zariski-open subspace
V ⊂ X□tri,ρ, the image of the morphism SpaR′ → X□tri,ρ also lands in V .
Since D is trianguline with regular parameters and trivialized quotients, the
morphism SpaR′ → V lifts to a morphism SpaR′ → V □.

The claim that V □ → S□d has relative dimension d2 follows because “changing
the framing” makes V □ a (GLd)

an-torsor over its image in S□d .

Now we can compute the dimension. By Proposition 2.2.7, we see that V □

is equidimensional of dimension d2 + d(d−1)
2 [K : Qp] + d[K : Qp] + d (resp.

d2+ d(d−1)
2 [K : Qp]+d[K : Qp]+d+dimSpaRan). Since V □ → V is a Gd

m,V -
torsor, it follows that V is equidimensional of dimension d2+ d(d+1)

2 [K : Qp]

(resp. d2 + d(d−1)
2 [K : Qp] + d[K : Qp] + dimSpaRan. Finally, V ⊂ X is

Zariski-dense, so we are done.

For the last part, we define V □,ψ,κ via the pullback

V □,ψ,κ V □

S□,δψ ,κd S□d

SpaRan Gm,Y

where Y := (̂O×
K)d and the morphism SpaRan → Gm,Y is given by κ and

δψ. Since V □ → Gm,Y is smooth, its image is open, and the pre-image in
SpaRan is open, as well. □

Remark 2.3.3. Suppose that x ∈ SpaRan is a maximal point such that the
fiber of X□,ψ,κtri,ρ contains a point (ρx, δx) such that δx is a regular parameter
for Drig(ρx). Then if we apply Proposition 2.3.2 with R = k(x)+, we see that
every irreducible component of the fiber containing (ρx, δx) has dimension
d2 + d(d−1)

2 [K : Qp] + d[K : Qp].

Example 2.3.4. We return to the setting of Example 2.2.9, where K = Qp,
d = 2, R = Zp[[T0]] corresponds to integral weight space for a split maximal
torus of GL2 /Zp, ψ0 : GalQp → R× is an unramified character, and there
is a universal pair of characters λ1, λ2 : Z×

p ⇒ R×. We again set ψ :=

ψ0 (λ1λ2χcyc)
−1 and κ : (λ−1

2 , (λ1χcyc)
−1). Then if X□,ψ,κtri,ρ is non-empty,

each irreducible component is 6-dimensional.

Moreover, suppose there is a characteristic-p point (ρx, δx) with specified
weight and determinant, such that ρx is trianguline with regular parameter
δx. Then the fiber over δx|(Z×

p )2 is 4-dimensional; since this is one of p − 1
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disjoint characteristic-p fibers, we see that the irreducible component con-
taining (ρx, δx) contains a dense open characteristic-0 subspace, consisting
of points in U□tri(ρ)

reg (in the notation of [BHS17, Définition 2.4]).

Now we consider a global setup. Let F be a number field, and suppose that
ρ : GalF → GLd(F) is an absolutely irreducible representation, unramified
outside a finite set of primes S.

Then the homomorphisms
R□ρv → R□ρ,S

for each v | p induce a morphism(
SpaR□ρ,S

)an ×∏
v|p

T d →
∏
v|p

((
SpaR□ρv

)an
× T d

)
and we define X□tri,ρ,S to be the pre-image of

∏
v|pX

□
tri,ρv

.

If R is a complete local noetherian Zp-algebra with maximal ideal mR and
finite residue field, and ψ : GalF → R× is a continuous character such that
det ρ = ψ mod mR, the homomorphisms

R□,ψvρv
→ R□,ψρ,S

and
R□,ψρ,loc → R□,ψρ,S

induce a sequence of morphisms(
SpaR□,ψρ,S

)an
×
∏
v|p T d

(
SpaR□,ψρ,loc

)an
×
∏
v|p T d

∏
v|p

((
SpaR□,ψvρv

)an
× T d

)
where ψv := ψ|GalFv

. We define X□,ψtri,ρ,S and X□,ψtri,ρ,loc to be the pre-images

of
∏
v|pX

□,ψv
tri,ρv

in
(
SpaR□,ψρ,S

)an
×
∏
v|p T d and

(
SpaR□,ψρ,loc

)an
×
∏
v|p T d, re-

spectively.

If we additionally have d-tuples of characters κv := (κv,1, . . . , κv,d), where
κv,i : O×

Fv
→ O(X)× is a continuous character, and we set X := (SpaR)an,

we may form the spaces

X
□,ψ,κ
tri,ρ,S X

□,ψ,κ
tri,ρ,loc

∏
v|pX

□,ψv ,κv
tri,ρv

(
SpaR□,ψρ,S

)an
×

∏
v|p T d

(
SpaR□,ψρ,loc

)an
×

∏
v|p T d

∏
v|p

((
SpaR□,ψvρv

)an
× T d

)⊂ ⊂ ⊂

In particular, suppose we have fixed a neat level K = KpI, as in sections 3
and 4, and consider the ring R = Zp[[T0/Z(K)]] corresponding to integral
weight space. Since T0 =

∏
v|p(ResOFv/Zp Tv)(Zp), we have homomorphisms

Zp[[Tv(OFv)]] → R, and hence morphisms SpaR → SpaZp[[Tv(OFv)]]. Sup-
pose we have a determinant character ψ : GalF → R× and a set of weights
κv := (κv,1, . . . , κv,d) : O×

Fv
→ O(WF )

× for each v | p, such that ψ|GalFv
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and κv are compatible for all v, and such that ψv and κv factor through
Zp[[Tv(OFv)]] → R for all v, i.e., they depend only on the projection to
SpaZp[[Tv(OFv)]].

Proposition 2.3.5. Under the above assumptions, there is an open subspace
Z ⊂ WF such that X□,ψ,κtri,ρ,loc|Z → Z is equidimensional of dimension |Σp|(d2−
1) + [F : Q]d(d−1)

2 .

Proof. Viewing ψv as a character GalFv → Zp[[Tv(OFv)]]
× and viewing κv =

(κv,1, . . . , κv,d) as a d-tuple of characters O×
Fv
→ Zp[[Tv(OFv)]]

×, we have a
pullback diagram

X
□,ψ,κ
tri,ρ,loc

∏
v|pX

□,ψv ,κv
tri,ρv

WF
∏
v|p (SpaZp[[Tv(OFv)]])

an

The right vertical morphism has relative dimension∑
v|p

(
d2 − 1 + [Fv : Qp]

d(d− 1)

2

)
= |Σp|(d2 − 1) + [F : Q]

d(d− 1)

2

over an open subspace of
∏
v|p (SpaZp[[Tv(OFv)]])

an, so the morphismX
□,ψ,κ
tri,ρ,loc →

WF does, as well. □

The case we will be most interested in is the case where F/Q is cyclic and
totally split at p, and d = 2. In that case, X□,ψv ,κvtri,ρv

→ SpaZp[[Tv(OFv)]]
an

has relative dimension 4 over an open subspace of SpaZp[[Tv(OFv)]]
an for

each v | p, and hence X□,ψ,κtri,ρ,loc → WF has relative dimension 4[F : Q] over
an open subspace of WF .

2.4. Trianguline deformation rings. We have constructed the trianguline
varieties X□tri,ρ and X

□,ψ,κ
tri,ρ as subspaces of the (non-quasicompact) pseudo-

rigid space Gad,d
m ×Z (̂O

×
K)d×

(
SpaR□ρ

)an
. However, the advantage of working

with general pseudorigid spaces is that we can construct integral models, so
long as we bound the slope.

We will apply this to find formal models for pieces of our trianguline vari-
eties. Recall that when K is a finite extension of Qp and ρ is a representa-
tion of GalK , we defined X□tri,ρ and X

□,ψ,κ
tri,ρ as analytic subspaces of Gad

m ×

SpaZp[[(O
×
K)d]]×

(
SpaR□ρ

)an
and Gad

m × SpaZp[[(O
×
K)d]]×

(
SpaR ⊗̂R□ρ

)an
,

respectively. By construction, SpaZp[[(O×
K)d]]×

(
SpaR□ρ

)an
has an integral

model, but Gad
m × SpaZp[[(O

×
K)d]]×

(
SpaR□ρ

)an
×

(
SpaR□ρ

)an
does not; in
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particular, it is not equal to the analytic locus of SpaR□ρ ⊗̂Zp[[(O
×
K)d]]

〈
T, T−1

〉
(and similarly for Gad

m × SpaZp[[(O
×
K)d]]×

(
SpaR ⊗̂R□ρ

)an
).

In order to construct integral models of annuli, we begin with an illustrative
example.

Example 2.4.1. Suppose R = Zp[[u]] and h is an integer. We may cover
Spa(Zp[[u]]

an with the open affinoid subspaces U1 := Spa
(
Qp

〈
u
p

〉)
and

U2 := Spa
(
Zp[[u]]

〈 p
u

〉 [
1
u

])
; their intersection is the circle U1∩U2 = Spa

(
Qp

〈
u
p ,

p
u

〉)
.

The annulus CU1,h is affinoid, with coordinate ring

Qp

〈
u

p
, phT, T2

〉
/(TT2 − ph) = Qp

〈
u

p
, T, T1, T2

〉
/(T1 − phT, TT2 − ph)

Restricting to U1 ∩ U2, we obtain an affinoid with coordinate ring

Zp[[u]]

〈
u

p
,
p

u
, T, T1, T2

〉[
1

u

]
/(T1 − uh

(p
u

)h
T, TT2 − uh

(p
u

)h
)

Writing T ′
1 :=

(
u
p

)h
T1 and T ′

2 :=
(
u
p

)h
T2, we get

Zp[[u]]

〈
u

p
,
p

u
, T, T ′

1, T
′
2

〉[
1

u

]
/(T ′

1 − uhT, TT ′
2 − uh)

which is also the restriction of CU2,h to U1 ∩ U2.

Thus, we see that CY,h in this case is

Spa
(
Zp[[u]]

〈
T, T1, T2, T

′
1, T

′
2

〉
/
(
phT ′

1 − uhT1, phT ′
2 − uhT2, T1 − phT, T1T2 − ph, T ′

1 − uhT, TT ′
2 − uh

))an

which has an integral model.

Returning to the general case, we may choose a Zp-basis for the torsion-
free part of O×

K and corresponding coordinates on SpaZp[[O
×
K ]]an. Then we

may consider relative annuli over SpaZp[[Ô
×
K ]]; as above, these annuli glue

to a space Th cut out of SpaZp[[Ô×
K ]] ⟨T, {T1,i, T2,i}⟩an, which has an integral

model Th. Similarly, given some integer d ≥ 1, we may define relative annuli
T dh ⊂ T d over SpaZp[[(O

×
K)d]]an, which have integral models Tdh.

Now we may set

X□tri,ρ,≤h := X□tri,ρ ∩
(
SpaR□ρ × T dh

)an

and

X
□,ψ,κ
tri,ρ,≤h := X

□,ψ,κ
tri,ρ ∩

(
SpaR ⊗̂R□ρ × T dh

)an
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When F is a totally real field and ρ is a representation of GalF unramified
outside a finite set of places S, we may similarly define bounded global trian-
guline varietiesX□tri,ρ,S,≤h andX□,ψ,κtri,ρ,S,≤h as subspaces of

(
SpaR□ρ ×

∏
v|p T dh

)an

and
(
SpaR ⊗̂R□ρ ×

∏
v|p T dh

)an
, respectively.

We emphasize that these bounded trianguline varieties are not canonical;
they depend on a choice of coordinates on SpaZp[[O

×
K ]]an.

Now we restrict to the case K = Qp, and we choose coordinates z1, . . . , zd
on each component of SpaZp[[(Z×

p )
d]]an. Write h = a/b, where a, b are non-

negative relatively prime integers. We will construct an integral model of
X□tri,ρ,≤h using Corollary A.0.2.

For z ∈ {p, z1, . . . , zd}, we get an affinoid Uz := SpaRz, where Rz :=
Zp[[(Z

×
p )

d]]
〈p
z ,

z1
z , . . . ,

zd
z

〉 [
1
z

]
with ring of integersRz,0, inside SpaZp[[(Z×

p )
d]]an.

Then the restriction of T dh to Uz has the presentation

SpaZp[[(Z
×
p )

d]]
〈p
z
,
z1
z
, . . . ,

zd
z
, zaT±b

1 , . . . , zaT±b
d

〉[
1

z

]
Over this space, there is a d-tuple δ1, . . . , δd : Q×

p ⇒ R×
z where δi(p) = Ti

and (δi|Z×
p
) is the restriction of the universal character on (Z×

p )
d.

Given an affinoid SpaR ⊂
(
SpaR□ρ

)an
with pseudouniformizer u ∈ R, there

is a (φ,Γ)-module DR of rank d over SpaR. To study the bounded tri-
anguline variety, we first study morphisms DR → ΛR,rig,Qp(δd). Equiva-
lently, we consider the twist DR(δ

−1
d ) over the (non-quasi-compact) space

SpaR × SpaRz
〈
zhT±1

i

〉
and consider morphisms DR(δ

−1
d ) → ΛR,rig,Qp to

the trivial rank-1 (φ,Γ)-module.

We wish to first consider the closure ZR of

ZR := {(ρx, δd,x) | there is a surjective map Drig(ρx)→ Λκ(x),rig,Qp
(δd,x)}

in SpaR0 ⊗̂Rz,0
〈
zaT bi , T

′
i

〉
/(T bi T

′
i − za).

There is a non-zero morphism at precisely the points x ∈ SpaR × SpaRz
where H0(D∨

R(δd)x) is non-vanishing; equivalently (by Tate duality), at pre-
cisely the points where H2(DR(δ

−1
d χcyc)x) is non-vanishing.

By [Bel23a, Proposition 5.2] (more precisely, by the proof of the correspond-
ing result [KPX14, Proposition 3.3] in characteristic 0), H2(DR(δ

−1
d χcyc))

vanishes if Td is sufficiently u-adically small and H2(D∨
R(δdχcyc)) vanishes

if T−1
d is sufficiently u-adically small. Here “sufficiently small” depends only

on DR, not on the twist by δd|Z×
p
. The first H2 tells us about the existence

of non-zero maps DR → ΛR,rig,Qp(δd), and the second tells us about the
existence of non-zero maps ΛR,rig,Qp(δ

−1
d ) → D∨

R (and these are the same
condition at maximal points of SpaR).
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Hence we may view ZR as a Zariski-closed subspace of

{T = Td} ⊂ SpaR
〈
uNT±1

〉
× SpaRz

〈
zaT±b

i

〉
for some N ≫ 0.

Now we may apply [Bel23a, Corollary 5.3] to the universal twist of DR

over SpaR
〈
uNT±1

d

〉
, and we conclude that Z ′

R is contained in the subspace
{|zN ′

d | ≤ |u|} for N ′ ≫ 0. Since ZR ⊂ Z ′
R, the same is true of ZR and its

Zariski closure ZR.

This lets us study the points consisting of a Galois representation together
with a first step in a triangulation and their Zariski-closure; in order to pro-
ceed by induction and study the points consisting of Galois representations
together with a full triangulation, we will need the following lemma:

Lemma 2.4.2. Let R be a pseudoaffinoid algebra with pseudouniformizer
u ∈ R, and let D be a family of (φ,Γ)-modules of rank d over R such
that H0(k(x) ⊗R D∨) is non-zero at a Zariski-dense set of maximal points
x ∈ SpaR. Then there is a finite affinoid cover {Ui} of SpaR and a collection
of proper morphisms πi : Ũi → Ui such that

(1) There are morphisms λi : π∗iD → Λ
Ũi,rig,Qp

⊗L , for some line bundle

L on Ũi
(2) The kernel of λi is a family of (φ,Γ)-modules of rank d− 1

Proof. After replacing SpaR with a connected component of its normaliza-
tion, we may assume that SpaR is normal and irreducible. Using [KPX14,
Corollary 6.3.6(2)], there is a proper birational morphism f : XR → SpaR
such that H i(f∗D∨) is flat for i = 0 and has Tor-dimension at most 1 for
i = 1, 2. For any x ∈ X, we have an exact sequence

0→ kx ⊗H0
(
f∗D∨)→ H0

(
kx ⊗ f∗D∨

R

)
→ TorOX1

(
H1(f∗D∨), kx

)
→ 0

(where we have used the low-degree exact sequences coming from the base-
change spectral sequence cf. [Bel23a, Corollary 3.12] and the assumption
that H i(f∗D∨) has Tor-dimension at most 1 for i = 1, 2). Since we assumed
that H0(k(x) ⊗R D∨) is non-zero at a Zariski-dense set of maximal points
x ∈ SpaR, we see that H0(f∗D∨) is projective of non-zero rank.

Let g : YR → XR be the projective space Proj
(
SymH0(f∗D∨)∨) over XR.

Since g : YR → XR is flat, we have g∗H i(f∗D)
∼−→ H i(g∗f∗D) for all i, and

moreover, g∗f∗D retains the property that H0(g∗f∗D) is flat (of non-zero
rank) and H i(g∗f∗D) has Tor-dimension at most 1 for i = 1, 2.

Over YR, there is a universal quotient g∗H0(f∗D∨)∨ ↠ OYR(1), which in-
duces an injection OYR(−1) → g∗H0(f∗D∨) with projective cokernel. If we
consider the composition

ΛYR,rig,Qp ⊗ OYR(−1)→ ΛYR,rig,Qp ⊗ g∗H0(f∗D∨)→ g∗f∗D∨
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we may again dualize to obtain a morphism λ : g∗f∗D → OYR(1)⊗ΛYR,rig,Qp .

There is a finite affinoid cover {SpaR′
j} of YR trivializing OYR(1); we let λj

denote the restriction of λ to SpaR′
j . For any x ∈ SpaR′

j , we again have an
exact sequence

0→ kx⊗H0
(
g∗f∗D∨

R

)
→ H0

(
kx ⊗ g∗f∗D∨

R

)
→ TorOX1

(
H1(g∗f∗D∨

R), kx
)
→ 0

This implies in particular that the specialization of λj is non-zero. If x
has characteristic-p residue field, this implies that the specialization of λj is
surjective. As in the proof of [Bel23a, Lemma 5.7], this implies that there
is an affinoid subdomain Vj = {|p| ≤ |urj |} ⊂ SpaR′

j containing the locus
{p = 0} over which λj is surjective.

Let N := max{rj} and set U1 := {|p| ≤ |uN |} ⊂ SpaR. Then the pre-image
(f ◦ g)−1 (U1) is contained in ∪jVj . We will set Ũ1 := (f ◦ g)−1 (U1). Then
by construction, π1 : Ũ1 → U is surjective, and

λ|
Ũ1

: π∗1D → π∗1OYR(1)|U1

is surjective, so its kernel is a family of (φ,Γ)-modules of rank d− 1.

On the other hand, set U2 := {|uN | ≤ |p|} ⊂ SpaR. Then the pre-image
(f ◦ g)−1 (U2) is quasi-compact and contained in the characteristic-0 locus
of YR, so we may apply the techniques of the proof of [KPX14, Theorem
6.3.9]. More precisely, we let h : U ′

2 → (f ◦ g)−1 (U2) be a proper birational
morphism so that H i((f ◦ g ◦h)∗D/t) is flat for i = 0 and has Tor-dimension
at most 1 for i = 1, 2 (again using [KPX14, Corollary 6.3.6(2)]). This lets us
deduce that h∗λ|U ′

2
is surjective away from a proper Zariski-closed subspace,

and locally on U ′
2, its cokernel is killed by a power of t. Then we make a

further blow-up Ũ2 → U ′
2 such that over U2, the kernel of λ is a family of

(φ,Γ)-modules of rank d− 1, as desired. □

This permits us to use induction to deduce the following:

Corollary 2.4.3. Let R be a pseudoaffinoid algebra with pseudouniformizer
u ∈ R, and let D be a family of rank-d (φ,Γ)-modules over R. Consider
the Zariski closure Z of the locus in Gm,R×SpaRz,0 corresponding to points
x = (Dx, δx) where |δi,x(p)±1| ≤ |z−hi | for all i, and δx is a regular parameter
of Dx. Then there are some N,N ′ ≫ 0 such that

Z ⊂ {|zNi | ≤ |u| for all i} ⊂ SpaR
〈
uN

′
T±1
i

〉
× SpaRz,0

This is precisely the condition we need to apply Corollary A.0.2, so the
closure we are interested in is well-behaved in Spf R0

〈
uN

′
T±1
i

〉
⊗̂Rz,0, and

hence in the localization

{T ′′
i = Ti} ⊂ Spf R0

〈
uN

′
Ti

±1
〉
⊗̂Rz,0

〈
zaT ′′

i
b
, T ′

i

〉
/(T ′′

i
b
T ′
i − za)
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Letting z range over {p, z1, . . . , zd}, we may glue to get a closed subspace
of Spf R0 × Tdh. Letting SpaR range over a (finite) cover of

(
SpaR□ρ

)an
, in

turn, it follows that we may construct integral models of pieces of trianguline
varieties:

Corollary 2.4.4. Suppose that ρ is a representation of GalK , where K is a
finite extension of Qp, or of GalF , where F is a totally real number field (in
which case we assume ρ is unramified outside a finite set of places S). Then
there are affine formal schemes X□tri,ρ,≤h = Spf R□tri,ρ,≤h (resp. X□tri,ρ,S,≤h =

Spf R□tri,ρ,S,≤h) and X
□,ψ,κ
tri,ρ,≤h (resp. X

□,ψ,κ
tri,ρ,S,≤h) such that

(
X□tri,ρ,≤h

)an
=

X□tri,ρ,≤h (resp.
(
X□tri,ρ,S,≤h

)an
= X□tri,ρ,S,≤h) and

(
X
□,ψ,κ
tri,ρ,≤h

)an
= X

□,ψ,κ
tri,ρ,≤h

(resp.
(
X
□,ψ,κ
tri,ρ,S,≤h

)an
= X

□,ψ,κ
tri,ρ,S,≤h).

3. Extended eigenvarieties

3.1. Definitions. We briefly recall the construction of extended eigenvari-
eties in the two cases of interest to us. Fix a number field F and a re-
ductive group H over F which is split at all places above p; then we define
G := ResF/QH. If we choose split models HOFv

over OFv for each place v | p,
along with split maximal tori and Borel subgroups Tv ⊂ Bv ⊂ HOFv

, we ob-
tain an integral model GZp :=

∏
v|pHOFv

of G, as well as closed subgroup
schemes

T :=
∏
v|p

ResOFv/Zp Tv ⊂ B :=
∏
v|p

ResOFv/Zp Bv

Let T0 := T(Zp), and let the Iwahori subgroup I ⊂ GZp(Zp) be the pre-
image of B(Fp) under the reduction map GZp(Zp)→ GZp(Fp).

We choose a tame level by choosing compact open subgroups Kℓ ⊂ G(Qℓ)
for each prime ℓ ̸= p, such that Kℓ = G(Zℓ) for almost all primes ℓ (where
G is some reductive model of G over Z[1/M ] for some integer M). Then we
put Kp :=

∏
ℓ ̸=pKℓ and K := KpI; we assume throughout that K contains

an open normal subgroup K ′ such that [K : K ′] is prime to p and

(3.1.1) x−1D×x ∩K ′ ⊂ O×,+
F for all x ∈ (AF,f ⊗F D)×

which is the neatness hypothesis of [JN19b].1 If Z denotes the center of G,
we let Z(K) := Z(Q) ∩ K and let Z(K) ⊂ T0 denote its p-adic closure.
We also let K∞ ⊂ G(R) be a maximal compact and connected subgroup at
infinity, and let Z◦

∞ ⊂ Z∞ =: Z(R) denote the identity component.

1The authors assume throughout that the level is neat; to relax this assumption, one
chooses an open normal subgroup K′ ⊂ K of index prime to p such that K′ is neat,
and considers the complexes C•

c (K
′,−)K/K

′
and CBM

• (K′,−)K/K′ . Since K/K′ has order
prime to p, the finite-slope subcomplexes C•

c (K,Dκ)
K/K′

≤h and CBM
• (K′,−)≤h,K/K′ remain

perfect.
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Finally, let Σ ⊂ T0 be the kernel of some splitting of the inclusion T0 ⊂
T(Qp); there are then certain submonoids Σcpt ⊂ Σ+ ⊂ Σ, and we fix some
t ∈ Σcpt.

In the cases of interest to us, F will be a totally real field, completely split at
p, and H will be either GL2 or the reductive group D× corresponding to the
units of a totally definite quaternion algebra over F split at every place above
p. Fixing isomorphisms Dv

∼−→ Mat2(Fv) for each place v where D is split,
we may define integral models of Hv via HOFv

(R0) := (R0 ⊗Mat2(OFv))
×

for all OFv -algebras R0 (whether H = GL2 or D×). In either case, we let
Bv ⊂ HOFv

be the standard upper-triangular Borel and we let Tv ⊂ Bv be
the standard diagonal maximal torus.

For either choice of H, the adelic subgroup K(N) ⊂ (AF,f ⊗H(F ))× of full
level N is neat for N ≥ 3 such that N is prime to the finite places v where
Hv ̸= GL2. Thus, if we assume p ≥ 5, we may take Kp arbitrary.

For either choice of H, we define Σ+
v :=

{(
ϖ
a1
v 0
0 ϖ

a2
v

)
| a2 ≥ a1

}
and ∆v :=

IvΣ
+
v Iv. Similarly, we define Σ+ :=

∏
v|pΣ

+
v and ∆p := IΣ+I =

∏
v|p∆v.

Then we fix Uϖv :=
[
Iv

(
1
ϖv

)
Iv
]
∈ Iv\H(Fv)/Iv and Up :=

∏
v|p Uϖv .

For each prime ℓ ̸= p, we fix a monoid ∆ℓ ⊂ G(Qℓ) containing Kℓ, which
is equal to G(Qℓ) when Kℓ = G(Zℓ), such that (∆ℓ,Kℓ) is a Hecke pair
and the Hecke algebra T(∆ℓ,Kℓ) over Zp is commutative. Then we define
∆p :=

∏′
ℓ ̸=p∆ℓ and ∆ := ∆p∆p. We write T(∆p,Kp) := ⊗ℓ̸=pT(∆ℓ,Kℓ)

and T(∆,K) := ⊗ℓT(∆ℓ,Kℓ) for the corresponding global Hecke algebras.

A weight is a continuous homomorphism κ : T0 → R× which is trivial on
Z(K), where R is a pseudoaffinoid algebra over Zp. We define weight space
W via

W (R) := {κ ∈ Homcts(T0, R
×) | κ|Z(K) = 1}

It can be written explicitly as the analytic locus of Spa
(
Zp[[T0/Z(K)]],Zp[[T0/Z(K)]]

)
.

Then W is equidimensional of dimension 1+[F : Q]+d, where d is the defect
in Leopoldt’s conjecture for F and p.

The next step is to construct a sheaf of Hecke modules over weight space,
such that Up acts compactly and admits a Fredholm determinant. We will
actually use two such sheaves. If κ : T0 → R× is a weight, then [JN16]
construct certain modules of analytic functions Arκ and distributions Drκ.
Here r ∈ (rκ, 1), where rκ ∈ [1/p, 1). When rκ ∈ (1/p, 1), they also con-
struct A<rκ and D<rκ , so that Drκ is the dual of A<rκ and Arκ is the dual of
D<rκ . As in [HN17] we fix augmented Borel–Serre complexes CBM

• (K,−) and
C•
c (K,−) for Borel–Moore homology and compactly supported cohomology,

respectively, and we consider

CBM
• (K,Arκ)
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as well as
C•
c (K,Drκ) and C•

c (K,D<rκ )

NowArκ andDrκ are potentially orthonormalizable, so CBM
∗ (K,Arκ) := ⊕iCBM

i (K,Arκ)
and C∗

c (K,Drκ) := ⊕iCic(K,Drκ) are, as well. Since Up acts compactly on Arκ
and Drκ, this implies that there are Fredholm determinants F r,′κ and F rκ for
its action on CBM

∗ (K,Arκ) and C∗
c (K,Drκ), respectively.

It turns out that F r,′κ and F rκ are independent of r, by [JN16, Proposition
4.1.2]; we set Dκ := lim←−r D

r
κ and Aκ := lim−→r

Arκ, and we write Fκ and
F ′
κ for the Fredholm determinants of Up on C∗

c (K,Dκ) and CBM
∗ (K,Aκ),

respectively. Then Fκ and F ′
κ define spectral varieties Z ⊂ A1

WF
and Z ′ ⊂

A1
WF

. We let π : Z → WF and π′ : Z ′ → WF be the projection on the first
factor; they are flat morphisms of pseudorigid spaces.

By [JN16, Theorem 2.3.2], Z has a cover by open affinoid subspaces V such
that U := π(V ) is an open affinoid subspace of WF and π|V : V → U is
finite of constant degree. This implies that over such a V , F factors as
FV = QV SV where QV is a multiplicative polynomial of degree deg π|V , SV
is a Fredholm series, and QV and SV are relatively prime.

If such a factorization exists, we may make C•
c (K,DV ) into a complex of OZ -

modules by letting T act via U−1
p . Then the assignment V 7→ kerQ∗

V (Up) ⊂
C•(K,DV ) defines a bounded complex K • of coherent OZ -modules, where
Q∗
V (T ) := T degQVQV (1/T ). If V = π−1(U), where (U, h) is a slope datum,

then K • is the slope-≤ h subcomplex of C•
c (K,DV ). We set

M ∗
c := ⊕iH i(K )

which is a coherent sheaf on Z .

Such factorizations exist locally, by an extension of a result of [AS]:

Proposition 3.1.1. Let R be a pseudoaffinoid algebra, and let x0 ∈ SpaR
be a maximal point. Let F (T ) ∈ R{{T}} be a Fredholm power series and fix
h ∈ Q. Suppose Fx0 ̸= 0, and let Fx0 = Q0S0 be the slope ≤ h-factorization
of the specialization of F at x0. Then there is an open affinoid subspace U ⊂
SpaR containing x0 such that FU has a slope ≤ h-factorization FU = QS
with Q specializing to Q0 and S specializing to S0 at x0.

Proof. The existence of the factorization of Fx0 follows from the version of
the Weierstrass preparation theorem proved in [AS, Lemma 4.4.3]. Then the
proof of the proposition is nearly identical to that of [AS, Theorem 4.5.1], up
to replacing p with u and translating the numerical inequalities into rational
localization conditions. □

Since spectral varieties are flat over weight space, we will be able to use the
following result to show that slope factorizations exist:
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Theorem 3.1.2 ([Con06, Theorem A.1.2]). Let f : X → Y be a flat map
of pseudorigid spaces. Then f is finite if and only it is quasi-compact and
separated with finite fibers, and its fiber rank is locally constant on Y .

Remark 3.1.3. This result is stated in [Con06] for classical rigid spaces, but
the proof goes through unchanged for pseudorigid spaces. The input from
non-archimedean geometry is the theory of formal models (and flattening
results) of [BL93a], [BL93b]; Although the authors had in mind applications
to classical rigid analytic spaces, they worked in sufficient generality that
their results hold in the more general pseudorigid context. One uses this
theory to reduce to the corresponding algebraic result of [DR73, Lemma
II.1.19].

We further observe that we have inclusions Drκ ⊂ D<rκ ⊂ Dsκ for any rκ ≤
s < r. Thus, the fact that F rκ = F sκ implies that M ∗

c = ⊕iH i
c(K,D

<r
κ )≤h for

any r > rκ.

We may carry out the same procedure for the action of Up on CBM
∗ (K,Aκ),

and obtain a coherent sheaf MBM
∗ = ⊕iHBM

i (K,Aκ)≤h on Z ′. Let T denote
either T(∆p,Kp) or T(∆,K). Both M ∗

c and MBM
∗ are Hecke modules, so

we have constructed eigenvariety data (Z ,M ∗
c ,T, ψ) and (Z ′,MBM

∗ ,T, ψ′)
(where ψ : T → EndOZ

(M ∗
c ) and ψ′ : T → EndOZ ′ (M

BM
∗ ) give the Hecke-

module structures).

Finally, we may construct eigenvarieties from the eigenvariety data. Let T
and T ′ denote the sheaves of OZ -algebras generated by the images of ψ and
ψ′, respectively; in particular, if ZU,h ⊂ Z is an open affinoid corresponding
to the slope datum (U, h), then

T (ZU,h) = im
(
O(ZU,h)⊗Zp T→ EndO(ZU,h) (H

∗
c (K,DU )≤h

)
=: TU,h

and

T ′(Z ′
U,h) = im

(
O(Z ′

U,h)⊗Zp T→ EndO(Z ′
U,h)

(
HBM

∗ (K,AU

)
≤h

)
=: T′

U,h

Then we set
X T

G := SpaT

and
X T,′

G := SpaT ′

and we have finite morphisms q : XG → Z and q′ : X ′
G → Z ′, and Zp-

algebra homomorphisms ϕX : T → O(X T
G) and ϕX ′ : T → O(X T,′

G ). If
the choice of Hecke operators is clear from context, we will drop T from the
notation.

If T = T(∆,K), then unlike [JN16], we are adding the Hecke operators Uϖv
at places v | p to our Hecke algebras (and hence to the coordinate rings of
our eigenvarieties), not just the controlling operator Up.
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3.2. The middle-degree eigenvariety. When F = Q and G = H = GL2,
for any fixed slope h such that C•

c (K,Dκ) has a slope-≤ h decomposition, the
complex C•

c (K,Dκ)≤h has cohomology only in degree 1, and H1
c (K,Dκ)≤h

is projective. As a result, the eigencurve is reduced and equidimensional,
and classical points are very Zariski-dense. For a general totally real field
F , the situation is more complicated. The complex C•

c (K,Dκ)≤h lives in de-
grees [0, 2d] and we are still primarily interested in the degree-d cohomology;
indeed, the discussion of [Har87, §3.6] shows that cuspidal cohomological
automorphic forms contribute only to middle degree cohomology in the clas-
sical finite-dimensional classical analogue. However, there is no reason to
expect the other cohomology groups to vanish.

Instead, following [BH17] we will sketch the construction of an open sub-
space XGL2 /F,mid ⊂XGL2 /F where H i

c(K,Dκ) vanishes for i ̸= d; by [BH17,
Theorem B.0.1], all classical points of XGL2 /F whose associated Galois rep-
resentation have sufficiently large residual image lie in XGL2 /F,mid. The
cohomology and base change result [JN16, Theorem 4.2.1] shows that the
locus where H i

c(K,Dκ) = 0 for i ≥ d + 1 is open, but we need to use the
homology complexes CBM

• (K,Aκ) to control H i
c(K,Dκ) for i ≤ d− 1.

As in [BH17], the key points are a base change result for Borel–Moore homol-
ogy, and a universal coefficients theorem relating it to compactly supported
cohomology:

Proposition 3.2.1. • There is a third-quadrant spectral sequence

Ei,j2 = TorR−i(H
BM
−j (K,Aκ)≤h, S)⇒ HBM

−i−j(K,AκS )≤h

• There is a second-quadrant spectral sequence

Ei,j2 = ExtiR(H
BM
j (K,Aκ)≤h, R)⇒ H i+j

c (K,Dκ)≤h

These are spectral sequences of T(∆,K)-modules.

The proof uses both the fact that D<rκ is the continuous dual of Arκ, and the
fact that H i

c(K,D<rκ )≤h = H i
c(K,Drκ)≤h for all r > rκ.

Proposition 3.2.2. If (U, h) is a slope datum, then we have a natural com-
muting diagram

O(U)⊗ T(∆,K) T′
U,h

T′
U,h Tred

U,h

Thus, we have a morphism τ : X red
GL2 /F

→ X ′
GL2 /F

and a closed immersion
i : X red

GL2 /F
↪→XGL2 /F .
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Definition 3.2.3.

XGL2 /F,mid := XGL2 /F ∖
[(
∪2dj=d+1 supp(M

j
c )
)
∪
(
∪d−1
j=0 supp(i∗τ

∗MBM
j

)]

By construction, a point x ∈ XGL2 /F of weight λx lies in the Zariski-open
subspace XGL2 /F,mid ⊂ XGL2 /F if and only if Hj

c (K, kx ⊗ Dλx)mx = 0 for
all j ̸= d (where mx is the maximal ideal of the Hecke algebra corresponding
to x).

Proposition 3.2.4. (1) The coherent sheaf M d
c |XGL2 /F,mid

is flat over
W .

(2) XGL2 /F,mid is covered by open affinoids W such that W is a connected
component of (π ◦ q)−1(U), where (U, h) is some slope datum, and
T (W ) acts faithfully on M d

c (W ) ∼= eWH
d
c (K,Dκ)≤h (where eW is

the idempotent projector restricting from (π ◦ q)−1(U) to W ).

Proof. This follows from the base change spectral sequence, and the criterion
for flatness. □

3.3. Jacquet–Langlands. The classical Jacquet–Langlands correspondence
lets us transfer automorphic forms between GL2 and quaternionic algebraic
groups. Over Q, this correspondence was interpolated in [Che05] to give a
closed immersion of eigencurves X rig

D×/Q ↪→ X rig
GL2 /Q

; this interpolation was
given for general totally real fields in [Bir19]. We give the corresponding
result for extended eigenvarieties. However, as we have elected to work with
the eigenvariety for GL2 /F constructed in [JN16] via overconvergent coho-
mology, instead of the eigenvariety constructed from Hilbert modular forms,
we will never get an isomorphism of eigenvarieties, even when [F : Q] is even.

Let D be a totally definite quaternion algebra over F , split at every place
above p, and let dD be its discriminant. For any ideal n ⊂ OF with (dD, n) =

1, we define the subgroup KD×

1 (n) ⊂ (OD ⊗ Ẑ)×

K
D×

1 (n) :=
{
g ∈ (OD ⊗ Ẑ)× | g ≡ ( ∗ ∗

0 1 ) (mod n)
}

We may define a similar subgroup KGL2 /F
1 (n) ⊂ ResOF /Zp GL2(Ẑ).

A classical algebraic weight is a tuple (kσ) ∈ ZΣ∞
≥2 together with a tuple

(vσ) ∈ ZΣ∞ such that (kσ) + (vσ) = (r, . . . , r) for some r ∈ Z, where Σ∞
is the set of embeddings F ↪→ R. Set e1 := ( r+kσ2 ) and e2 := ( r−kσ2 ), and
define characters κi : F× → R× for i = 1, 2 via

κi(x) =
∏
σ∈Σ∞

σ(x)ei,σ

Then (κ1, κ2) is a character on T(Z) which is trivial on a finite-index sub-
group of the center ZG(Z) = O×

F .
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Then we have the classical Jacquet–Langlands correspondence:

Theorem 3.3.1. Let κ be a classical weight, and let n ⊂ OF be an ideal
such that (n, dD) = 1. There is a Hecke-equivariant isomorphism of spaces
of cusp forms

SD
×

κ (K
D×

1 (n))
∼−→ SdD−new

κ (K
GL2 /F
1 (ndD))

We will interpolate this correspondence to a closed immersion XD× ↪→
XGL2 /F , where the source has tame level KD×

1 (n) and the target has tame
level KGL2 /F

1 (n). We use the interpolation theorem of [JN19a]:

Theorem 3.3.2 ([JN19a, Theorem 3.2.1]). Let Di = (Zi,Mi,Ti, ψi) for i =
1, 2 be eigenvariety data, with corresponding eigenvarieties Xi, and suppose
we have the following:

• A morphism j : Z1 → Z2

• A Zp-algebra homomorphism T2 → T1

• A subset X cl ⊂ X1 of maximal points such that the T2-eigensystem
of x appears in M2(j(π1(x))) for all x ∈X cl.

Let X ⊂ X1 denote the Zariski closure of X cl (with its underlying reduced
structure). Then there is a canonical morphism i : X → X2 lying over j,
such that ϕX ◦σ = i∗ ◦ϕX2. If j is a closed immersion and σ is a surjection,
then i is a closed immersion.

We remark that in the presence of integral structures, we can make a sharper
statement:

Corollary 3.3.3. With notation as above, suppose that the Zi = SpaRi are
affinoid, with Ri,0 ⊂ Ri rings of definition such that j is induced by a mor-
phism Spf R1,0 → Spf R2,0, and suppose that Mi := Γ(Zi,Mi) admit Ri,0-
lattices Mi,0 stable under the actions of Ti. Let R′

i,0 := im
(
Ri,0 ⊗ Ti → EndRi,0(Mi,0)

)
and let X 0 denote the closure of X cl in Spf R′

1,0. Then there is a morphism
j0 : X 0 → Spf R′

2,0.

Proof. As in the proof of [JN19a, Theorem 3.2.1], one reduces to the case
where R0 := R1,0 = R2,0 and T := T1 = T2, and one considers the actions
of T1 ⊕ T2 on M1,0 ⊕M2,0. Then we have quotients

R3,0 := im (R0 ⊗ T→ EndR0(M1,0 ⊕M2,0))↠ R′
i,0

Since X ⊂X2 and Spf R3,0 is separated, we have X 0 ⊂ Spf R′
2,0, as desired.

□

We take Z1 = Z2 = WF ×Gm. In order to define T = T1 = T2, we set

∆v =

{
GL2(Fv) if v ∤ pdDn
K
D×

1 (n)v if v | dDn
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For v | p, we take ∆v as in §3.1. In other words, T is the commutative
Zp-algebra generated by Tv := [Kv

(
1
ϖv

)
Kv] and Sv := [Kv (

ϖv
ϖv )Kv]

for v ∤ pdDn and Uϖv for v | p.
However, we cannot immediately combine this interpolation theorem with
the Jacquet–Langlands correspondence, because our choice of weight space
means that classical weights may not be Zariski dense unless Leopoldt’s
conjecture is true. More precisely, given a classical algebraic weight, we
constructed a character on T(Z) trivial on a finite-index subgroup of O×

F ,
and conversely, characters on T(Z) trivial on a finite-index subgroup of O×

F
yield classical algebraic weights. This equivalence relies on Dirichlet’s unit
theorem.

This means that there are two natural definitions of p-adic families of weights,
W ′
F = SpaZp[[(ResOF /Zp Gm)×Z×

p ]]
an interpolating classical algebraic weights,

and WF interpolating characters on T0, and the equivalence of those two def-
initions depends on Leopoldt’s conjecture.

Fortunately, the gap between these weight spaces can be controlled: there
is a closed embedding W ′

F ↪→ WF , and the twisting action by characters on
O×
F,p/O

×,+
F defines a surjective map

̂
O×
F,p/O

×,+
F ×W ′

F → W rig
F

We say that a weight λ ∈ W rig
F (Qp) is twist classical if it is in the

̂
O×
F,p/O

×,+
F (Qp)-

orbit of a classical weight. Then twist classical weights are very Zariski dense
in WF .

In addition, we may define a twisting action on Hecke modules, as in [BH17].
Let GalF,p denote the Galois group of the maximal abelian extension of F
unramified away from p and ∞, and let η : GalF,p → Q

×
p be a continuous

character. Global class field theory implies that GalF,p fits into an exact
sequence

1→ O×
F,p/O

×,+
F → GalF,p → Cl+F → 1

where Cl+F is the narrow class group of F (and hence finite). Suppose M is
an R-module equipped with an R-linear left ∆p-action. Then we may define
a new left ∆p-module M(η) :=M ⊗ η−1|O×

F,p
, where the action of g ∈ ∆p is

given by
g ·m =

(
η−1|O×

F,p
(det g · p−

∑
v|p v(det g))

)
· (g ·m)

In particular, Dκ(η) ∼= Dη−1·κ by [BH17, Lemma 5.5.2], and there is an
isomorphism

twη : H
∗
c (K,Dκ)

∼−→ H∗
c (K,Dη−1·κ

Suppose x ∈ XD×(Qp) is a point with wt(x) =: λ, corresponding to the
system of Hecke eigenvalues ψx : T → Qp. Then we define a new system of
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Hecke eigenvalues, via

twη(ψx)(T ) =


η(ϖv)ψx(T ) if v ∤ pdDn and T = Tv

η(ϖv)
2ψx(T ) if v ∤ pdDn and T = Sv

η(ϖv)ψx(T ) if v | p

Then it follows from [BH17, Proposition 5.5.5] that twη(ψx) corresponds to
a point twη(x) ∈XD× of weight η−1|O×

F,p
· κ.

We say that a point x ∈XD×(Qp) is twist classical if it is in the ĜalF,p(Qp)-
orbit of a point corresponding to a classical system of Hecke eigenvalues.

Proposition 3.3.4. Twist classical points are very Zariski dense in XD×.

Proof. Recall that XD× admits a cover by affinoid pseudorigid spaces of the
form SpaT (ZU,h), where π : ZU,h → U is finite of constant degree, and

T (ZU,h) = im
(
O(ZU,h)⊗Zp Tp → EndO(ZU,h)(H

∗
c (K,DU )≤h

)
We write U = SpaR for some pseudoaffinoid algebraR over Zp. We will show
that SpecT (ZU,h) → SpecR carries irreducible components surjectively
onto irreducible components, and we will construct a Zariski dense set of
maximal points W tw−cl

U,h ⊂ U such that the points of wt−1(W tw−cl
U,h ) are twist

classical. By [Che04, Lemme 6.2.8], this implies the desired result.

To see that irreducible components of SpecT (ZU,h) map surjectively onto
irreducible components of SpecR, we observe thatD is totally definite, so the
associated Shimura manifold is a finite set of points and H∗

c (K,DU ) vanishes
outside degree 0. The base change spectral sequence of [JN16, Theorem 4.2.1]
implies that the formation of H0(K,DU )≤h commutes with arbitrary base
change on U , which implies that H0(K,DU )≤h is flat. Then [Che04, Lemme
6.2.10] implies that SpecT (ZU,h)→ SpecR carries irreducible components
surjectively onto irreducible components, as desired.

Thus, it remains to construct W tw−cl
U,h . Birkbeck proved a “small slope implies

classical” result [Bir19, Theorem 4.3.7], and constructed a set W cl
U,h Zariski

dense in U ∩ W ′
F such that the points of wt−1(W cl

U,h) are classical (see the

proof of [Bir19, Theorem 6.1.9]). Setting W tw−cl
U,h to be the

̂
O×
F,p/O

×,+
F (Qp)-

orbit of W cl
U,h, [BH17, Lemma 6.3.1] implies that points of wt−1(W tw−cl

U,h ) are
twist classical, and we are done. □

As a corollary, we deduce that XD× has no components supported entirely
in characteristic p:

Corollary 3.3.5. X rig

D× is Zariski dense in XD×.

We may use similar arguments to show that XD× is reduced:
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Proposition 3.3.6. The eigenvariety XD× is reduced.

Proof. We first show that X rig

D× is reduced. By [JN16, Proposition 6.1.2]
(which adapts [Che05, Proposition 3.9]), it is enough to find a Zariski dense
set of twist classical weights W ss

U,h ⊂ U ⊂ W rig
F for each slope datum (U, h)

such that M (ZU,h)κ is a semi-simple Hecke module for all κ ∈ W ss
U,h. Birk-

beck [Bir19, Lemma 6.1.12] constructed sets W ′,ss
U,h Zariski dense in U ∩W ′,rig

F

with this property, and we will again use twisting by p-adic characters to
construct W ss

U,h.

If η : O×
F,p/O

×,+
F → Q

×
p is a character, we have an isomorphism

twη : H
∗
c (K,Dκ)

∼−→ H∗
c (K,Dη−1·κ

By [BH17, Proposition 5.5.5], twη is Hecke-equivariant up to scalars, so
M (ZU,h)κ is a semi-simple Hecke module if and only if M (Zη−1·U,h)η−1·κ

is. Thus, we may take W ss
U,h to be the

̂
O×
F,p/O

×,+
F (Qp)-orbit of ∪U ′W ′,ss

U ′,h, as
(U ′, h) varies through slope data, and we see that X rig

D× is reduced.

Now let X ⊂ XD× be an open affinoid subspace, and let {Xi} be an open
affinoid cover of the rigid analytic locus Xrig ⊂ X. Since X ∖Xrig contains
no open subset of X, the natural map

O(X)→
∏
i

O(Xi)

is injective. Each O(Xi) is reduced, so O(X) is, as well. □

Now the Jacquet–Langlands correspondence for eigenvarieties follows imme-
diately:

Corollary 3.3.7. There is a closed immersion XD× ↪→ XGL2 /F inter-
polating the classical Jacquet–Langlands correspondence on (twist) classical
points, where the source has tame level KD×

1 (n) and the target has tame level
K

GL2 /F
1 (n).

In particular, if [F : Q] is even, we can find D split at all finite places and
ramified at all infinite places. Then we may take in particular n = OF to
obtain a morphism of eigenvarieties of tame level 1.

3.4. Cyclic base change. Fix an integer N ∈ N, and let S be a finite set
of primes containing every prime dividing pN . For any number field F , we
again let Kp

F ⊂ GL2(AF ) be the compact open subgroup given by

Kp
F := {g ∈ GL2(AF ) | g ≡ ( ∗ ∗

0 1 ) (mod N)}
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and we let KF := Kp
F I. We also define the Hecke algebra

TSF := TSGL2 /F
:= ⊗v/∈ST(GL2(Fv),GL2(OFv))

There is a homomorphism σSF : TSF → TSQ induced by unramified local Lang-
lands and restriction of Weil representations from WF to WQ.

Similarly, there is a morphism of weight spaces WQ,0 ↪→ WQ → WF induced
by the norm map TF,0 → TQ,0.

In the special case where F/Q is cyclic, [JN19a] interpolated the classical
base change map:

Theorem 3.4.1 ([JN19a, Theorem 4.3.1]). 2 There is a finite morphism

X S
GL2 /Q,cusp,F−ncm →X S

GL2 /F

lying over WQ → WF and compatible with the homomorphism σSF .

Here the source includes only cuspidal components with a Zariski-dense set
of forms without CM by an imaginary quadratic subfield of F .

We wish to characterize the image of this map when F is totally real and
completely split at p (so that the “F - ncm” condition is vacuous). We further
assume that [F : Q] is prime to p.

Remark 3.4.2. We expect that it is possible to construct a base change
morphism and characterize its image for more general cyclic extensions of
number fields F ′/F ; however, for simplicity (and compatibility with [JN19a])
we have chosen to restrict to this setting.

Let Gal(F/Q) = ⟨τ⟩. Then Gal(F/Q) acts on GL2/F , stabilizing T ⊂ B and
I, and also stabilizing the tame level Kp

F . We will construct a “Gal(F/Q)-
fixed GL2/F -eigenvariety” X

S,Gal(F/Q)
GL2 /F

and show that it is the image of the
cyclic base change map; Xiang [Xia18] used a similar idea to construct p-adic
families of essentially self-dual automorphic representations.

We first observe that Gal(F/Q) acts on TSF via (τ · T )(g) = T (τ−1(g)) for
all T ∈ TSF and g ∈ GL2(AF,f ). Then for any δ ∈ ∆, (τ · [KF δKF ])(g) =
[KF τ

−1(δ)KF ](g), and in particular, τ · Uϖv = Uτ(v), and hence Gal(F/Q)
fixes Up. Similarly, we have an action of Gal(F/Q) on WQ given via (τ ·
λ)(g) = λ(τ−1(g)); the image of WQ in WF is the diagonal locus, i.e., exactly
the Gal(F/Q)-fixed locus.

Since Up is fixed by Gal(F/Q), we see that if κ is a weight fixed by Gal(F/Q),
then the Fredholm determinant Fκ(T ) of the action of Up on C•(KF ,Dκ) is

2The authors only construct the morphism when N ≥ 5, to maintain their running
assumption that the level is actually neat (as opposed to containing an open neat subgroup
with index prime to p). However, the argument is identical for small N .
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fixed by Gal(F/Q). Thus, we have a spectral variety Z Gal(F/Q) ⊂ W
Gal(F/Q)
F ×

A1,an over W
Gal(F/Q)
F .

Lemma 3.4.3. Let κ : T0 → R× be a weight fixed by Gal(F/Q). There
is an action of Gal(F/Q) on C•(KF ,Dκ) and if Dκ admits a slope-≤ h
decomposition, the action of Gal(F/Q) stabilizes C•(KF ,Dκ)≤h.

Proof. Referring to the definition of Dκ for an arbitrary weight κ, we have
Dκ = lim←−D

r
κ, where Drκ is the completion of a module Dκ with respect to

a norm ∥ · ∥r. The module Dκ itself is the continuous dual of the space
Aκ ⊂ C(I,R) of continuous functions f : I → R such that f(gb) = κ(b)f(g)
for all g ∈ I and b ∈ B0. It follows that we have a map τ : Aκ → Aτ(κ)
(since the action of Gal(F/Q) preserves both I and B0). If κ is fixed by τ ,
we obtain a dual action of Gal(F/Q) on Dκ, and hence Drκ and Dκ.

Since Kp
F is also stable under the action of Gal(F/Q) and the actions of

Kp
F and Gal(F/Q) on Dκ commute, by functoriality we obtain an action

of Gal(F/Q) on C•(KF ,Dκ). Moreover, the action of Gal(F/Q) fixes the
Hecke operator Up, so [JN16, Proposition 2.2.11] implies that the action of
Gal(F/Q) also preserves C•(KF ,Dκ)≤h. □

Lemma 3.4.4. Let κ : T0 → R× be a weight fixed by Gal(F/Q). For any
T ∈ TSF , we have τ · T = τ ◦ T ◦ τ−1 as operators on C•(KF ,Dκ).

Proof. We may assume T = [KF δKF ] for some δ ∈ ∆. Then τ · [KF δKF ] =
[KF τ(δ)KF ], and the corresponding morphism

C•(KF ,Dκ)→ C•(τ(δ)KF τ(δ)
−1,Dκ)

is induced by the conjugation map τ(δ)KF τ(δ)
−1 → KF and the map Dκ →

Dκ given by d 7→ τ(δ) ·d. But τ(δ)KF τ(δ)
−1 = τ

(
δτ−1(KF )δ

−1
)
, so we may

factor the conjugation map as

τ(δ)KF τ(δ)
−1 τ−1

−−→ δτ−1(KF )δ
−1 → τ−1(KF )

τ−→ KF

Similarly, d 7→ τ(δ) · d factors as τ ◦ T ◦ τ−1, so our morphism of complexes
also factors as desired. □

We may restrict M ∗
c to Z Gal(F/Q); we denote this restriction by H ∗ and by

abuse of notation, we again use T to denote the sheaf generated by the image
of TSF in E ndZ Gal(F/Q) (H ∗). Then the slice of the eigenvariety X S

GL2 /F
over

W
Gal(F/Q)
F is, by definition, SpaT .

Both T(∆p,Kp
F ) and EndO(V ) (H

∗
c ) have actions of Gal(F/Q), and Lemma 3.4.4

implies that they are compatible. Thus, T (V ) and X S
GL2 /F

|
W

Gal(F/Q)
F

have
actions of Gal(F/Q).

The subspace of XGL2 /F fixed by Gal(F/Q) corresponds to the sheaf V 7→
T (V )Gal(F/Q) of co-invariants of T ; by definition, T (V )Gal(F/Q) acts on
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(H ∗)Gal(F/Q), and the map T (V )Gal(F/Q) → E ndZ Gal(F/Q)

(
(H ∗)Gal(F/Q)

)
is injective. Moreover, since Gal(F/Q) is a finite group with order prime to p,
the formation of (H ∗)Gal(F/Q) commutes with specialization on Z Gal(F/Q).

The above discussion gives us an eigenvariety datum

(Z Gal(F/Q), (H ∗)Gal(F/Q), (TSF )Gal(F/Q), ψ)

and we let X
S,Gal(F/Q)
GL2 /F

denote the corresponding pseudorigid space.

Proposition 3.4.5. There is a closed immersion X
S,Gal(F/Q)
GL2 /F

↪→ X S
GL2 /F

,
and the image of the morphism XGL2 /Q,cusp →XGL2 /F constructed in [JN19a,
§4.3] is contained in the image of X

Gal(F/Q)
GL2 /F

.

Proof. Both assertions follow from [JN19a, Theorem 3.2.1]. The first fol-
lows because T(∆p,Kp) ↠ T(∆p,Kp)Gal(F/Q) is a surjection. The second
follows because classical points are very Zariski-dense in XGL2 /Q, and the
fact that the image of a classical system of Hecke eigenvalues under the clas-
sical cyclic base change map is fixed by Gal(F/Q); since (H ∗(z))Gal(F/Q) =

(H ∗)Gal(F/Q) (z) for all z ∈ Z Gal(F/Q), we may again apply [JN19a, Theo-
rem 3.2.1]. □

We let
X

S,Gal(F/Q),◦
GL2 /F

:= X
S,Gal(F/Q)
GL2 /F

∩X S
GL2 /F,mid

and we let X
S,Gal(F/Q),◦
GL2 /F

denote its Zariski closure in X S
GL2 /F

.

Lemma 3.4.6. Classical points are very Zariski dense in X
S,Gal(F/Q),◦
GL2 /F

.

Proof. If (U, h) is a slope datum and W ⊂ X S
GL2 /F

is a connected affinoid
subspace of the pre-image of U , then T (W ) = eWT (U) and M ∗

c (W ) ∼=
eWH

∗
c (K,DU )≤h, where eW is the idempotent projector to W . If W ⊂

X S
GL2 /F,mid, then M ∗

c
∼= eWH

d
c (K,DU )≤h and Hd

c (K,DU )≤h is a projective

OW (U)-module. It follows that the restriction of M ∗
c to X

S,Gal(F/Q),◦
GL2 /F

is a
vector bundle, and since |Gal(F/Q)| is prime to p, its Gal(F/Q)-invariants
remain projective.

Now we may apply [Che04, Lemme 6.2.10] to conclude that T (W ) is equidi-
mensional of dimension dimO

W
Gal(F/Q)
F

(U), and every irreducible component
of SpecT (W ) surjects onto an irreducible component of SpecO

W
Gal(F/Q)
F

(U).
If x ∈ W has a classical weight that is sufficiently large (where “sufficiently
large” depends on h), then x corresponds to a classical Hilbert modular form.
But sufficiently large classical weights are Zariski dense in U , so [Che04,
Lemme 6.2.8] implies that classical points are dense in W . □
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Remark 3.4.7. The proofs of Proposition 3.4.5 and Lemma 3.4.6 are the
only times we use our assumption that |Gal(F/Q)| is prime to p. If we
restricted to the rigid analytic locus (where p is invertible, so (H ∗)Gal(F/Q)

is unconditionally projective, with (H ∗(z))Gal(F/Q) = (H ∗)Gal(F/Q) (z)),
this hypothesis would be unnecessary.

Corollary 3.4.8. The image of the cyclic base change morphism in X S
GL2 /F,mid

is exactly X
S,Gal(F/Q),◦
GL2 /F

.

Proof. Since the morphism X
S,Gal(F/Q),◦
GL2 /F

→ XGL2 /F is finite, it has closed
image. Moreover, cyclic base change carries any classical point of XGL2 /Q,cusp

to a point of X
S,Gal(F/Q),◦
GL2 /F

. On the other hand, every classical point of

X
S,Gal(F/Q),◦
GL2 /F

is in the image of cyclic base change, by the classical theorem,
so Lemma 3.4.6 implies the desired result. □

3.5. Galois representations. In [JN16, §5.4], the authors construct fam-
ilies of Galois determinants (in the sense of [Che14]) over the eigenvarieties
XG when G = ResF/QGLn and F is totally real or CM, and prove that
they satisfy local-global compatibility at places away from p and the level.
Then the Jacquet–Langlands correspondence lets us deduce the following:

Theorem 3.5.1. Let D be a quaternion algebra over a totally real field F ,
such that F is totally split at p and D is split at all places above p. Let
K = KpI ⊂ (AF,f ⊗D)× be the level, and let S be the set of finite places v
of F for which D is ramified or Kv ̸= GL2(OFv). Then there is a continuous
2-dimensional Galois determinant D : GalF,S → O(XD×)+ such that

D(1−X · Frobv) = Pv(X)

for all v /∈ S, where Pv(X) is the standard Hecke polynomial.

Moreover, if v | p then for every maximal point x ∈ XD× of weight κx =

(κx,1, κx,2), we let ψ : O(XD×)+ → k(x)+ denote the corresponding spe-
cialization map. Then there is a proper Zariski-closed subspace Z ⊂ XD×

such that for x /∈ Z, the Galois representation corresponding to Dx|GalF,v is
trianguline with parameters δ1, δ2 : F×

v ⇒ k(v)×, where

δ1|O×
Fv

= κ−1
x,2|O×

v
and δ1(ϖv) = ψ(Uϖv)

and
δ2|O×

Fv
= (κx,1|O×

v
χcyc)

−1 and δ2(ϖv) = ψ(Iv (
ϖv

1 ) Iv)

Proof. It only remains to check local-global compatibility at places above p.
But this is true for non-critical classical points by work of Saito, Blasius–
Rogawski, and Skinner, and it is true for twists of those classical points by
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the definition of twisting. Then the result follows from [KPX14, Corollary
6.3.10] and [Bel23a, Theorem 6.8]. □

Remark 3.5.2. For each point x ∈ XD× , there is a residual Galois deter-
minant Dx valued in a finite field. These residual Galois determinants are
constant on each connected component of XD× , as a consequence of [Che14,
Lemma 3.10].

As in Corollary 3.3.3, we can make a sharper local statement in the presence
of integral structures. Suppose κ : T0/Z(K) → R× is a weight, where R is
a pseudoaffinoid algebra equipped with a norm adapted to κ, and R0 ⊂ R
is the corresponding unit ball (so in particular, κ takes values in R0). If
(SpaR, h) is a slope datum, for any r > rκ we define

H0(K,D<rκ )≤h := im
(
H0(K,D<r,◦κ )→ H0(K,D<rκ )≤h

)
and

T<r,◦κ,≤h := im
(
R0 ⊗ T→ EndR0(H

0(K,D<r,◦κ )≤h)
)

Corollary 3.5.3. With hypotheses and notation as above, there is a 2-
dimensional Galois determinant D0 : GalF,S → T<r,◦,redκ,≤h such that

R◦ ⊗R0 D0 = R◦ ⊗O(XD× )+ D

Proof. This is a corollary of the construction of [JN16, §5.4], rather than of
Theorem 3.5.1. For each maximal point x ∈ SpaR with residue field L and
ring of integers OL, let κx be the composition of κ with R0 → OL. By [JN16,
Corollary 5.3.2(2)] combined with Corollary 3.3.3, there is a 2-dimensional
Galois determinant Dx : GalF,S → T<r,◦,redκx,≤h valued in the reduced quotient
of T<r,◦κx,≤h. We have an injection

T<r,◦,redκ,≤h ↪→
∏
x

T<r,◦,redκx,≤h

where the x range over maximal points of SpaR. The ring T<r,◦,redκ,≤h is com-
pact since it is a finite R0-module, so by [Che14, Example 2.3.2] the T<r,◦,redκx,≤h -
valued determinants glue to D0. □

3.6. Quaternionic sub-eigenvarieties. In order to study suitable spaces
of overconvergent quaternionic modular forms, we will need to define and
study eigenvarieties parametrizing quaternionic modular forms with certain
auxiliary data fixed. We let F be a totally real number field totally split at
p, and we let D be a totally definite quaternion algebra over F , split at all
places above p. We fix a level K ⊂ (AF,f ⊗F D)× and monoid K ⊂ ∆ ⊂
(AF,f ⊗F D)×, and we set T to be either T(∆p,Kp) or T(∆,K).

In order to construct an eigenvariety for D, we fixed a Borel–Serre complex
C•
c (K,−) and we considered the cohomology C•

c (K,Dκ). However, because
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we assumed D is totally definite, the associated Shimura manifold is a finite
set of points, and so the cohomology of C•

c (K,−) = C•(K,−) vanishes
outside of degree 0.

Thus, we can give an extremely concrete description of the automorphic
forms of interest to us and of the Hecke operators acting on them. Suppose
that M is a left R[∆]-module, for some pseudoaffinoid algebra R. Then if
f : D×\(AF,f ⊗F D)× → M is a function and γ ∈ ∆, we define γ |f via
γ |f(g) = γ · f(gγ). Then

H0(K,M) =
{
f : D×\(AF,f ⊗F D)× →M | γ |f = f for all γ ∈ K

}
We can describe the Hecke operator [KgK] : H0(K,M) → H0(K,M) ex-
plicitly for any g ∈ ∆; we decompose the double coset KgK =

∐
i giK as a

finite disjoint union of cosets, and we have

[KgK]f :=
∑
i

gi |f

The first piece of auxiliary data we want to fix is the central character. If
ξ : A×

F,f/F
× → R×

0 is a continuous character such that ξ|Kv∩O×
Fv

agrees with

the action of Kv ∩O×
Fv

on M for all finite places v of F , we may extend the
action of K on M to an action of K ·A×

F,f , by letting A×
F,f act by ξ. Then

we define

H0(K,M)[ξ] := {f ∈ H0(K,M) | z|f = f for all z ∈ A×
F,f}

If we write D×\(AF,f ⊗F D)×/K =
∐
i∈I D

×giKA×
F,f for some finite set of

elements gi ∈ (AF,f ⊗F D)×, the natural map

H0(K,M)[ξ]→ ⊕i∈IM (KA×
F,f∩g

−1
i D×gi)/F×

f 7→ (f(gi))

is an isomorphism.

The calculations of [Tay06, Lemma 1.1] show that (KA×
F,f ∩ g

−1
i D×gi)/F

×

is a finite group with order prime to p for all i (since we assumed p ̸=
2). Thus, if M is a potentially orthonormalizable Banach R-module, then
so is H0(K,M)[ξ], and we will be able to apply the formalism of slope
decompositions to quaternionic modular forms with fixed central charac-
ter. More precisely, we may consider the action of a compact operator
U on H0(K,M)[ξ]. If H0(K,M)[ξ] admits a slope-≤ h-decomposition,
then H0(K,M)[ξ]≤h is a finite R-module which is a direct summand of
H0(K,M)[ξ]. SinceH0(K,M)[ξ] is potentially orthonormalizable,H0(K,M)[ξ]≤h
satisfies the property (Pr) of [Buz07] and by [Buz07, Lemma 2.11] it is ac-
tually projective as an R-module.

The coefficient modules of interest to us are the modules of distributions Dκ

constructed in [JN16], and we fix a character ξ : A×
F,f/F

× → Zp[[T0/Z(K)]]×
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as above. The operator Up commutes with the action of A×
F,f/F

× on Dκ

given by ξ, so Up acts compactly on C∗(K,Dκ)[ξ]. We may construct a cor-
responding spectral variety Zξ and eigenvariety datum (Zξ,Mξ,T, ψ), where
Mξ is the coherent sheaf on Zξ coming from factorizations of the character-
istic power series of Up; we write XD×,ξ for the corresponding eigenvariety.

By construction, H0(K,Dκ)[ξ]≤h is a projective R-module whenever (U, h) is
a slope datum. Then [Che04, Lemme 6.2.10] implies that if Mξ is non-zero,
XD×,ξ is equidimensional of the same dimension as WF .

Moreover, for each maximal point x ∈XD×,ξ, the corresponding Hecke eigen-
system appears in XD× (with unrestricted central character), by construc-
tion. Then the interpolation theorem [JN19a, Theorem 3.2.1] implies that
there is a closed immersion X red

D×,ξ
↪→ XD× , and dimension considerations

imply that its image is a union of irreducible components of XD× .

This implies in particular that as (U, h) runs over slope data for C∗(K,Dκ)[ξ],
the sets W ′,ss

U,h ⊂ U of semi-simple weights constructed in Proposition 3.3.6
are Zariski dense. Then we may repeat the argument of that proposition to
conclude that XD×,ξ is itself reduced.

We have shown the following:

Proposition 3.6.1. Given a character ξ : A×
F,f/F

× → O(WF )
× as above,

there is an eigenvariety XD×,ξ of quaternionic modular forms with central
character ξ. It is reduced and equidimensional, and it is naturally identified
as a (possibly empty) union of irreducible components of XD×.

We also wish to introduce eigenvarieties localized at maximal ideals of Hecke
algebras. Let m ⊂ T be a maximal ideal. By Theorem 3.5.1 and Re-
mark 3.5.2, the residual Hecke eigenvalues are locally constant on XD× . It
follows that the restrictions Mm and Mξ,m are supported on unions of con-
nected components of Z , which we write Zm and Zξ,m, respectively. In par-
ticular, if (U, h) is a slope datum, then H0(K,DU )≤h,m and H0(K,DU )≤h,ξ,m
are again finite projective O(U)-modules. Then an identical argument shows
the following:

Proposition 3.6.2. Given a character ξ : A×
F,f/F

× → O(WF )
× as above

and a maximal ideal m ⊂ T as above, for any choice of Hecke algebra T′

(possibly different from T) there are eigenvarieties X T′

D×,m
and X T′

D×,ξ,m
of

quaternionic modular forms localized at m. They are reduced and equidi-
mensional, and they are naturally identified as (possibly empty) unions of
connected components of X T′

D×.

Remark 3.6.3. We write h = m/n and consider the closed ball BU,h :=
{|Tn| ≤ |u−m|} ⊂ A1

U for some open affinoid U ⊂ WF . Setting ZU,h :=
Zm ∩ BU,h (resp. ZU,h := Zξ,m ∩ BU,h), we abuse terminology slightly and
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say that (U, h) is a slope datum for XD×,m (resp. XD×,ξ,m) if ZU,h → U is
finite of constant degree.

4. Overconvergent quaternionic modular forms

4.1. Definitions. We will use overconvergent cohomology to define and
study spaces of overconvergent quaternionic modular forms. Maintaining our
notation from § 3.1, and in particular § 3.6, we fix a level K ⊂ (AF,f ⊗F D)×

and monoid K ⊂ ∆ ⊂ (AF,f ⊗F D)×, and we set T to be either T(∆p,Kp)
or T(∆,K).

The coefficients for our families of overconvergent modular forms will be
a pseudoaffinoid algebra R over Zp; we set U := SpaR. We also fix a
pseudouniformizer u ∈ R. If κ : T0/Z(K) → R× is a weight, we choose a
norm |·| on R so that |·| is adapted to κ and multiplicative with respect to
u, and logp|·| is discrete (which we may do, by Lemma 4.1.1 below). Then
the unit ball R0 ⊂ R is a ring of definition containing u.

Fix some r ≥ rκ. We let Dr,◦κ ⊂ Drκ denote the unit ball, and we also consider
larger modules of distributions D<rκ ⊃ Drκ, with unit ball D<r,◦κ ⊂ D<rκ .
Following §3.6, we also fix a character ξ : A×

F,f/F
× → R× such that ξ|Kv∩O×

Fv

agrees with the action of Kv∩O×
Fv

on Drκ, that is, such that ξ|Kv∩O×
Fv

is trivial

for v ∤ p and ξ|Iv∩O×
Fv

is equal to the action of Iv ∩ O×
Fv

on Drκ for v | p.

The construction of the required norm on R is a variant of [JN16, Lemma
3.3.1], and we refer to that paper for the terminology:

Lemma 4.1.1. If R is a pseudoaffinoid algebra over Zp and κ : T0/Z(K) is a
weight, there is a norm |·| on R such that |·| is adapted to κ and multiplicative
with respect to u, the unit ball R0 is noetherian, and logp|·| is discrete.

Proof. Choose a noetherian ring of definition R0 ⊂ R formally of finite type
over Zp. As in the proof of [JN16, Lemma 3.3.1], κ(T0) ⊂ R◦ and κ(Tϵ) ⊂
1+R◦◦; since both groups are topologically finitely generated, we may replace
R0 with a finite integral extension and assume that κ(T0) ⊂ R0, and we may
find some integer m ≥ 1 so that κ(Tϵ)m ⊂ 1 + uR0.

Let R′ := R[u1/m], let R′
0 := R0[u

1/m], and let u′ := u1/m. Then R′ is a
finite R-module, so it has a canonical topology, and the subspace topology it
induces on R agrees with the original topology on R. Now for any a ∈ R>1

we may define a norm |·|′ on R′ via

|r′|′ = inf{as | u′sr′ ∈ R′
0}

The restriction of |·|′ to R has the desired properties. □

When U is a subspace of WF , we can make a more precise statement. In
this case, R is reduced, so the ring of power-bounded elements R0 := R◦ is
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a ring of definition. Then we may define a norm |·| on R via

|r| := inf{p−n | r ∈ unR0, n ∈ Z}

Lemma 4.1.2. If U is a rational subspace of WF and κ is the restriction of
the universal character on WF , then |·| is adapted to κ.

The proof is essentially identical to that of [JN16, Lemma 6.3.1].

Recall that we have Fredholm power series

Fκ := det
(
1− TUp | H0(K,Drκ)

)
and

Fκ,ξ := det
(
1− TUp | H0(K,Drκ)[ξ]

)
and they are independent of r ≥ rκ, by [JN16, Proposition 4.1.2].

If H0(K,Drκ) (resp. H0(K,Drκ)[ξ]) admits a slope ≤ h-factorization, then
the formalism of slope decompositions implies that we have a decomposition

H0(K,Drκ) = H0(K,Drκ)≤h ⊕H0(K,Drκ)>h
resp.

H0(K,Drκ)[ξ] = H0(K,Drκ)[ξ]≤h ⊕H0(K,Drκ)[ξ]>h
for all r ≥ rκ, and the decomposition is independent of r.

Moreover, if r′ ∈ [rκ, r), the inclusions

Drκ ⊂ D<rκ ⊂ Dr
′
κ

induce an isomorphism H0(K,Drκ)≤h
∼−→ H0(K,Dr′κ )≤h. We may therefore

define
H0(K,D<rκ )≤h := im

(
H0(K,Drκ)≤h → H0(K,D<rκ )

)
and

H0(K,D<rκ )[ξ]≤h := im
(
H0(K,Drκ)[ξ]≤h → H0(K,D<rκ )[ξ]

)
We make the additional definitions

H0(K,D<r,◦κ )≤h := im
(
H0(K,D<r,◦κ )→ H0(K,D<rκ )→ H0(K,D<rκ )≤h

)
and

H0(K,D<r,◦κ )[ξ]≤h := im
(
H0(K,D<r,◦κ )[ξ]→ H0(K,D<rκ )[ξ]→ H0(K,D<rκ )[ξ]≤h

)
We are now in a position to define spaces of overconvergent quaternionic
modular forms, together with an integral structure and Hecke algebras:

Definition 4.1.3. Suppose thatH0(K,D<rκ ) admits a slope-≤ h-decomposition,
where h = a/b for a, b positive and relatively prime integers. We define the
modular forms of weight κ and slope-≤ h to be the module

Sκ(K)≤h := H0(K,Dκ)≤h;

it is a module over the Hecke algebra

Tκ,≤h := im
(
T⊗Zp R→ EndR(Sκ(K)≤h)

)
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We define two modules of integral overconvergent modular forms (and cor-
responding Hecke algebras). As in § 3.5, we set

S<r,◦κ (K)≤h := H0(K,D<r,◦κ )≤h

and
T<r,◦κ,≤h := im

(
T⊗Zp R0 → EndR0

(
H0(K,D<r,◦κ )≤h

))
We also define a second lattice

S◦
κ(K)≤h := im

(
T[{uaU−b

ϖv}v|p]⊗T S
<r,◦
κ (K)≤h → Sκ(K)≤h

)
which is stable under the operators uaU−b

ϖv , as well; we set

T◦
κ,≤h := im

(
T[uaU−b

ϖv ]⊗Zp R0 → EndR0 (S
◦
κ(K)≤h)

)
If ξ : A×

F,f/F
× → R×

0 is a continuous character as above and H0(K,D<rκ )[ξ]

admits a slope-≤ h decomposition, we define the modular forms with central
character ξ to be Sκ,ξ(K)≤h := H0(K,Dκ)[ξ]≤h and similarly for integral
modular forms with central character ξ.

Remark 4.1.4. We expect that S◦
κ(K)≤h and the corresponding Hecke al-

gebra T◦
κ,≤h depend on r, but we have suppressed that from the notation for

the sake of compactness.

Remark 4.1.5. We will write T<r,◦K,κ,≤h and T◦
K,κ,≤h for these Hecke algebras

if the level is not clear from context.

We again write h = a/b with a, b positive and relatively prime integers. If
Sκ(K)≤h (resp. Sκ,ξ(K)≤h has rank d, then the characteristic polynomial of
uaU−b

ϖv is a monic degree-d polynomial over R. By the definition of a slope
decomposition, its roots are integral at every rank-1 point of SpaR. Hence
the coefficients actually live in R◦ and uaU−b

ϖv is power-bounded on Sκ(K)≤h
(resp. Sκ,ξ(K)≤h. In particular, if R is reduced and R0 = R◦, we see that
S◦
κ(K)≤h (resp. S◦

κ,ξ(K)≤h) is given concretely by∑
(iv)∈{0,...,d−1}Σp

∏
v|p

(uaU−b
ϖv)

iv
(
S<r,◦κ (K)≤h

)
In particular, U b(d−1)

p (S◦
κ(K)≤h) ⊂ S<r,◦κ (K)≤h (and similarly for S◦

κ,ξ(K)≤h).

We now fix a choice of Hecke algebra. Let S denote the set of places of F
such that v | p, D is ramified at v, or Kv ̸= O×

D,v. For v /∈ S, we define

Sv := [K (ϖv ϖv )K] , Tv :=
[
K

(
1
ϖv

)
K
]
∈ K\(AF,f ⊗D)×/K

for some fixed uniformizer ϖv of OFv .

We define the Hecke algebra T to be the free commutative Zp-algebra gen-
erated by {Uϖv}v|p and {Sw, Tw}w/∈S . Since ∆p acts on the modules of
distributions D<r,◦κ and Hecke operators away from p preserve the slope de-
composition, we may view S<r,◦κ (K)≤h as a T-module.
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We also describe the so-called diamond operators, after modifying the tame
level Kp. Suppose we have a finite set Q of places of F such that for each v ∈
Q, v ∤ p, Nm v ≡ 1 (mod p), D is split at v, and Kv = GL2(OFv). For each
v ∈ Q, we again let K0(v) ⊂ H(Fv) denote the subgroup {( ∗ ∗

0 ∗ ) mod v},
and we consider the homomorphism

K0(v)→ k(v)× → ∆v

given by composing (
a b
c d

)
7→ ad−1

with the projection to the p-power quotient k(v)× → ∆v. Let K−(v) denote
the group

K−(v) :=
{
( a ∗
c d ) ∈ K0(v) | ad−1 7→ 1 in ∆v

}
for each v ∈ Q, and let

K0(Q) :=
∏
v∈Q

K0(v) ·
∏
v/∈Q

Kv

and
K−(Q) :=

∏
v∈Q

K−(v) ·
∏
v/∈Q

Kv

Then K0(v)/K
−(v) ∼= ∆v, and every h ∈ ∆Q :=

∏
v∈Q∆v gives rise to a

Hecke operator

⟨h⟩ :=
[
K−(Q)h̃K−(Q)

]
on S<r,◦κ (K−(Q)), where h̃ is a lift of h to K0(Q); ⟨h⟩ is independent of the
choice of h̃.

We let T−
Q be the free commutative Zp-algebra generated by {Uϖv}v|p, {Sv, Tv}v/∈S ,

and {Uϖv}v∈Q, where Uϖv := [K−(v)
(
1 0
0 ϖv

)
K−(v)]; it acts naturally on

S<r,◦κ (K−(Q))≤h, and we let T<r,◦
K−(Q),≤h denote the R0-algebra its image gen-

erates in EndR0(S
<r,◦
κ (K−(Q))≤h). Similarly, we let T0,Q be the free commu-

tative Zp-algebra generated by {Uϖv}v|p, {Sv, Tv}v/∈S , and {Uϖv}v∈Q, where
Uϖv := [K0(v)

(
1 0
0 ϖv

)
K0(v)].

4.2. Integral overconvergent quaternionic modular forms. We need
to make a closer study of the structure of the integral modules of distributions
and their finite-slope subspaces.

Lemma 4.2.1. If κ : T0/Z(K) → R× is a weight and H0(K,Dκ) (resp.
H0(K,Dκ)[ξ]) admits a slope-≤ h-decomposition, then Sκ(K)≤h (resp. Sκ,ξ(K)≤h)
is a finite projective R-module. If the Fredholm power series Fκ has a slope
≤ h-factorization, then Sκ(K)≤h (resp. Sκ,ξ(K)≤h) is compatible with arbi-
trary base change on R.
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Proof. We prove the result for H0(K,Dκ); H0(K,Dκ)[ξ] is handled similarly.
It is enough to handle the case where the tame level is neat. Then Sκ(K)≤h
is a direct summand of the potentially orthonormalizable Banach R-module
H0(K,Dκ) which is finitely generate over R, so by [Buz07, Lemma 2.11] is
is projective.

If the Fredholm power series Fκ has a slope-≤ h-factorization, then the slope
decomposition is functorial in R, by [JN16, Theorem 2.2.13]. □

Corollary 4.2.2. If κ : T0/Z(K) → R× is a weight and H0(K,Dκ) (resp.
H0(K,Dκ)[ξ]) admits a slope-≤ h-decomposition, then S<r,◦κ (K)≤h (resp.
S<r,◦κ,ξ (K)≤h) is a finite R0-module.

Proof. This follows from the equality H0(K,Drκ)≤h = H0(K,D<rκ )≤h, and
the fact that D<r,◦κ is bounded in D<rκ . □

Now we consider the behavior of H0(K,D<r,◦κ )[ξ]≤h under change of coef-
ficients. Let κR : T0/Z(K) → R× be a weight. If f : R → R′ is a ho-
momorphism of pseudoaffinoid algebras, we let κR′ denote the composition
T0/Z(K)

κR−−→ R× f−→ R′×. By [JN16, Corollary A.14], f is topologically of
finite type, so we have a surjection R ⟨X1, . . . , Xn⟩ ↠ R′. If R is equipped
with a norm adapted to κR and R0 ⊂ R is the corresponding ring of defi-
nition, with u ∈ R0 a pseudouniformizer, we define R′

0 := R0 ⟨X1, . . . , Xn⟩
and u′ := f(u).

Let a := |u|R. We define a norm |·|R′ on R′ via

|r′|R′ := inf{a−n | r′ ∈ u′nR′
0}

Then R′
0 is the unit ball of R′ with respect to |·|R′ , and |u′|R′ = |u|R.

Moreover, if |·|R is adapted to κR, then |·|R′ is adapted to κR′ .

Lemma 4.2.3. With notation as above, suppose that f : R0 → R′
0 is a

finite map. Then the natural map R′
0 ⊗̂R0 D

<r,◦
κR → D<r,◦κR′ is a topological iso-

morphism (with respect to the u′-adic topology), where the completed tensor
product is taken with respect to the u-adic topology on D<r,◦κR and the u′-adic
topology on R′

0.

Proof. We first check that the morphism R′
0 ⊗̂R0 D

<r,◦
κR → D<r,◦κR′ is an isomor-

phism of R′
0-modules. The discussion after [JN16, Proposition 3.2.7] shows

that
D<r,◦κR

∼=
∏
α

R0 · u−nR(r,u,α)nα

where nR(r, u, α) :=
⌊
|α| logp r
logp|u|R

⌋
, n is a certain (non-canonical but explicit)

finite set (depending only on the group-theoretic data we fixed at the begin-
ning of §3), and α is a multi-index (and similarly for D<r,◦κR′ ). Now R′

0 is a
finitely presented R0-module, and for any finitely presented R0-module M ,
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the natural morphism M ⊗R0

∏
αR0 · u−nR(r,u,α)bα →

∏
αM · u−nR(r,u,α)bα

is an isomorphism. By construction, nR(r, u, α) = nR′(r, u′, α) for all α, so
the claim follows.

Finally, the morphism R′
0 ⊗̂R0 D

<r,◦
κR → D<r,◦κR′ is clearly continuous, so the

open mapping theorem implies that it is a topological isomorphism. □

Corollary 4.2.4. With notation as above, suppose that f : R0 → R′
0 is a

finite map. If Fκ has a slope ≤ h-factorization, then the natural map

R′
0 ⊗R0 S

<r,◦
κR,ξ

(K)≤h → S<r,◦κR′ ,ξ
(K)≤h

is surjective.

Proof. Writing D×\(AF,f ⊗F D)×/K =
∐
i∈I D

×giK for some finite set of
elements gi ∈ (AF,f ⊗F D)×, we have an isomorphism

H0(K,D<r,◦κR
)[ξ] ∼= ⊕i∈I

(
D<r,◦κR

)(KA×
F,f∩g

−1
i D×gi)/F×

For every map R→ R′ as above, Lemma 4.2.3 implies that the base change
map

R′
0 ⊗̂
R0

⊕iD<r,◦κR
→ ⊕iD<r,◦κR′

is an isomorphism. Moreover, the calculations of [Tay06, Lemma 1.1] show
that the order of (KA×

F,f ∩ g
−1
i D×gi)/F

× is prime to p for all i, so the base
change map R′

0 ⊗̂R0 H
0(K,D<r,◦κR )[ξ]→ H0(K,D<r,◦κR′ )[ξ] is an isomorphism.

Now we have a commutative diagram

R′
0 ⊗̂R0 H

0
(
K,D<r,◦κR

)
[ξ] R′ ⊗̂RH0

(
K,D<rκR

)
[ξ] R′ ⊗R H0

(
K,D<rκR

)
[ξ]≤h

H0
(
K,D<r,◦κR′

)
[ξ] H0

(
K,D<rκR′

)
[ξ] H0

(
K,D<rκR′

)
[ξ]≤h

∼ ∼

(where the fact that the right vertical arrow is an isomorphism follows from
Lemma 4.2.1). This implies first of all that the map R′⊗RH0

(
K,D<rκR

)
[ξ]→

H0
(
K,D<rκR′

)
[ξ] carries R′

0 ⊗R0 S
<r,◦
κR,ξ

(K)≤h to S<r,◦κR′ ,ξ
(K)≤h.

To prove surjectivity, we may lift f ∈ S<r,◦κR′ ,ξ
(K)≤h to an element ofR′

0 ⊗̂R0 H
0
(
K,D<r,◦κR

)
[ξ],

since the left vertical arrow is an isomorphism. Its image inR′⊗RH0
(
K,D<rκR

)
[ξ]≤h

is therefore an element of R′
0 ⊗R0 S

<r,◦
κR,ξ

(K)≤h in the pre-image of f . □

We may also extend [Kis09a, Lemma 2.1.4] and [Kis09a, Lemma 2.1.7] to
statements about families of integral overconvergent modular forms.

Proposition 4.2.5. Let κ : T0/Z(K)→ R× be a weight, and let χ : ∆Q →
R× be a character. For any finite set of primes Q as in § 4.1, suppose that
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H0(K0(Q),Dκ) and H0(K−(Q),Dκ) admit slope-≤ h-decompositions. Then
the natural map∑

h∈∆Q

χ(h)−1 ⟨h⟩ :
(
S<r,◦κ,ξ (K−(Q))≤h

)
∆Q=χ

→ S<r,◦κ,ξ (K−(Q))
∆Q=χ
≤h

is an isomorphism.

Here
(
S<r,◦κ,ξ (K−(Q))≤h

)
∆Q=χ

is the maximal quotient of S<r,◦κ,ξ (K−(Q))≤h

on which ∆Q acts by χ; if χ is the trivial character, this is simply the co-
invariants.

Proof. We first assume that K is neat. Writing D×\(AF,f⊗F D)×/K0(Q) =
⊔i∈ID×giK0(Q), we have a finite disjoint union

H0(K−(Q),D<r,◦κ )[ξ] = ⊕i∈I ⊕h∈∆Q D
<r,◦
κ

We claim that ∆Q acts freely onD×\(AF,f⊗FD)×/K−(Q). But ifD×gihjK
−(Q) =

D×gi′hj′K
−(Q), then the neatness hypothesis 3.1.1 implies that i = i′ and

j = j′. Hence we have

H0(K−(Q),D<r,◦κ )[ξ] = ⊕i∈IR0[∆Q]⊗R0 D<r,◦κ

and we can write∑
h∈∆Q

χ(h)−1 ⟨h⟩ :
(
H0(K−(Q),D<r,◦κ )[ξ]

)
∆Q=χ

∼−→ H0(K−(Q),D<r,◦κ )[ξ]∆Q=χ

and∑
h∈∆Q

χ(h)−1 ⟨h⟩ :
(
H0(K−(Q),D<rκ )[ξ]

)
∆Q=χ

∼−→ H0(K−(Q),D<rκ )[ξ]∆Q=χ

If K ′ ◁ K with K ′ neat and [K : K ′] prime to p, then
∑

h∈∆Q χ(d) ⟨h⟩
induces diagrams(

H0(K−(Q),D<r,◦κ )[ξ]
)
∆Q=χ

H0(K−(Q),D<r,◦κ )[ξ]∆Q=χ

(
H0(K ′−(Q),D<r,◦κ )[ξ]

)K′/K

∆Q=χ
H0(K ′−(Q),D<r,◦κ )[ξ]∆Q=χ,K′/K

∼

∼

∼

∼

and (
H0(K−(Q),D<rκ )[ξ]

)
∆Q=χ

H0(K−(Q),D<rκ )[ξ]∆Q=χ

(
H0(K ′−(Q),D<rκ )[ξ]

)K′/K

∆Q=χ
H0(K ′−(Q),D<rκ )[ξ]∆Q=χ,K′/K

∼

∼

∼

∼
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Using [JN16, Proposition 2.2.11], for any level K we obtain an isomorphism∑
h∈∆Q

χ(h)−1 ⟨h⟩ : Sκ,ξ(K−(Q)≤h)∆Q
∼−→ Sκ,ξ(K0(Q))≤h

Then we have a diagram

0 I∆Q,χH
0(K−(Q),D<r,◦)[ξ] H0(K−(Q),D<r,◦)[ξ] H0(K−(Q),D<rκ )[ξ]∆Q=χ 0

0 I∆Q,χH
0(K−(Q),D<r)[ξ]≤h H0(K−(Q),D<r)[ξ]≤h H0(K0(Q),D<rκ )[ξ]

∆Q=χ
≤h 0

where I∆Q,χ ⊂ R0[∆Q] denotes the ideal generated by the elements ⟨h⟩−χ(h)
for h ∈ ∆Q. A diagram chase shows that we have the desired isomorphism∑

h∈∆Q

χ(h)−1 ⟨h⟩ :
(
S<r,◦κ,ξ (K−(Q))≤h

)
∆Q=χ

∼−→ S<r,◦κ,ξ (K−(Q))
∆Q=χ
≤h

□

Now assume that R is a local field with uniformizer u, that is, a finite
extension of Qp or Fp((u)). Then by [AS, Theorem 4.4.2], it is automatic
thatH0(K,Dκ) andH0(K,Dκ)[ξ] admit slope-≤ h-decompositions (and that
Fκ and Fκ,ξ admit slope-≤ h-factorizations).

Proposition 4.2.6. If R is a local field, with ring of integers R0 and uni-
formizer u ∈ R0, the module S<r,◦κ,ξ (K−(Q))≤h is finite projective over R0[∆Q].

Proof. To check that S<r,◦κ,ξ (K−(Q)≤h) is projective over R0[∆Q], we may
replace R0 with a finite extension, so we may assume that R0 contains the
values of all characters χ : ∆Q → R

×. If ∆v has order pnv , we can write
R0[∆Q] explicitly (but non-canonically) as R0[{xv}v|p]/({x

pnv
v − 1); this as-

sumption implies that the polynomials xp
nv

v − 1 split completely, and the
ideals I∆Q,χ introduced above are the non-maximal prime ideals of R0[∆Q].

On the other hand, we have a family of surjections

H0(K−(Q),D<r,◦κ )[ξ]≤h ↠ H0(K−(Q),D<r,◦κ )[ξ]
∆Q=χ
≤h

The target is a lattice in H0(K−(Q),D<rκ )[ξ]
∆Q=χ
≤h ; since R0 is a discrete val-

uation ring, H0(K−(Q),D<r,◦κ )[ξ]
∆Q=χ
≤h is free of some rank dχ. Since R0[∆Q]

is a local ring, H0(K−(Q),D<r,◦κ )[ξ]≤h can be generated by dχ elements as
a R0[∆Q]-module.

Furthermore, R0[∆Q]∆Q=χ
∼= R0. Since H0(K−(Q),D<r,◦κ )[ξ]

∆Q=χ
≤h cannot

be generated as an R0-module by fewer than dχ elements, this implies that
the ranks dχ agree for all characters χ; call this number d.
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We therefore have a presentation of S<r,◦κ,ξ (K−(Q)≤h):

R0[∆Q]
⊕d′ → R0[∆Q]

⊕d → S<r,◦κ,ξ (K−(Q)≤h)→ 0

Since the surjection R0[∆Q]
⊕d → S<r,◦κ,ξ (K−(Q)≤h) is an isomorphism mod-

ulo each I∆Q,χ, the image ofR0[∆Q]
⊕d′ inR0[∆Q]

⊕d is contained in I∆Q,χR0[∆Q]
⊕d.

In particular, if d′ ̸= 0, then the Fitting ideals of S<r,◦κ,ξ (K−(Q)≤h) are con-
tained in ∩χI∆Q,χ.

On the other hand, the module H0(K−(Q),D<rκ )[ξ] is potentially orthonor-
malizable as anR[∆Q]-module, so by [JN16, Theorem 2.2.2]H0(K−(Q),D<rκ )[ξ]≤h
is a finite projective R[∆Q]-module. In particular, for each prime p ⊂ R[∆Q],
there is some integer dp ≤ d such that Fittk(Sκ,ξ(K−(Q))≤h,p) = 0 for k < dp
and Fittk(Sκ,ξ(K

−(Q))≤h,p) = R[∆Q]p for k ≥ dp. But the formation of Fit-
ting ideals is functorial in the coefficients, and ∩χI∆Q,χ does not generate
the unit ideal in R[∆Q], so d′ = 0 and S<r,◦κ,ξ (K−(Q)≤h) is free of rank d over
R0[∆Q]. □

We may consider characteristic polynomials of operators on Sκ,ξ(K−(Q))≤h,
viewed as either a rank-d projective R[∆Q]-module, or as a rank-d|∆Q] pro-
jective R-module. In particular, we have seen that if h = a/b, the R-linear
characteristic polynomial of uaU−b

ϖv has coefficients in R◦. Using properties
of circulant matrices, we see that the R[∆Q]-linear characteristic polynomial
of uaU−b

ϖv has coefficients in R◦[∆Q].

Corollary 4.2.7. Let notation be as above, and let d denote the rank of
Sκ,ξ(K0(Q))≤h. Suppose that R is reduced and R0 = R◦. Then the natural
map ∑

h∈∆Q

⟨h⟩ :
(
S◦
κ,ξ(K

−(Q))≤h
)
∆Q
→ S◦

κ,ξ(K0(Q))≤h

is surjective, and its kernel is annhilated by u(d−1)a.

Proof. Since uaU−b
ϖv is power-bounded for all v | p on both Sκ,ξ(K0(Q))≤h

and Sκ,ξ(K
−(Q))≤h, by assumption, and Uϖv commutes with the diamond

operators, surjectivity follows.

To study the kernel of
∑

h∈∆Q ⟨h⟩, we first observe that for f ∈ S◦
κ,ξ(K

−(Q))≤h,

U
b(d−1)
p (f) ∈ S<r,◦κ,ξ (K−(Q))≤h. Suppose f ∈ S◦

κ,ξ(K
−(Q))≤h is in the

kernel of
∑

h∈∆Q ⟨h⟩. Since Up commutes with the diamond operators,
(uaU−b

p )d−1(f) is also in the kernel of
∑

h∈∆Q ⟨h⟩, and by Proposition 4.2.6
it actually lives in I∆QS

<r
κ,ξ(K

−(Q))≤h. But then

u(d−1)af = (uaU−b
p )d−1U b(d−1)

p (f) ∈ I∆QS
◦
κ,ξ(K

−(Q))≤h

as desired. □
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Proposition 4.2.8. Suppose that κ is an open weight such that SpaR con-
tains a Zariski-dense set of classical weights, and suppose that Fκ admits a
slope ≤ h-factorization. Let Av, Bv ∈ T<r,◦K be lifts of αv, βv, respectively.
Then the map∏

v∈Q
(Uϖv −Bv) : S

<r,◦
κ,ξ (K)≤h,m → S<r,◦κ,ξ (K0(Q))≤h,mQ,0

is an isomorphism (where we view S<r,◦κ,ξ (K)≤h,m as a submodule of S<r,◦κ,ξ (K0(Q))≤h,m).

Proof. We may assume Q = {v}, by induction on the size of Q. Then the
source and the target are finite R0-modules. After inverting u, [Kis09a,
Lemma 2.1.7] implies that the map is an isomorphism when specialized
to any sufficiently large classical weight. It follows that Sκ,ξ(K)≤h,m and
Sκ,ξ(K0(Q))≤h,mQ,0 have the same rank over R. We claim that it suffices to
check that Uϖv − Bv is surjective after specializing at every maximal ideal
of R0. Indeed, this implies that

Uϖv −Bv : Sκ,ξ(K)≤h,m → Sκ,ξ(K0(Q))≤h,mQ,0

is a surjection of projective R-modules of the same rank, so it is injective.
Then the kernel of Uϖv−Bv on S<r,◦κ,ξ (K)≤h,m is u-torsion. But S<r,◦κ,ξ (K)≤h,m
has no u-torsion, by definition, so the kernel is trivial.

Thus, we need to check that

Uϖv −Bv : F′ ⊗R0 S
<r,◦
κ,ξ (K)≤h,m → F′ ⊗R0 S

<r,◦
κ,ξ (K0(Q))≤h,mQ,0

is surjective for any specialization R0 → F′ at a maximal ideal. There is some
maximal point x ∈ SpaR with residue field Rx and ring of integers Rx,0 such
that R0 → F′ factors through R0 → Rx,0, and by Corollary 4.2.4 the maps
Rx,0⊗R0S

<r,◦
κ,ξ (K)≤h,m → S<r,◦κx,ξ

(K)≤h,m and Rx,0⊗R0S
<r,◦
κ,ξ (K0(Q))≤h,m0,Q

→
S<r,◦κx,ξ

(K0(Q))≤h,mQ,0 are surjective. It therefore suffices to prove that

Uϖv −Bv : F′ ⊗Rx,0 S
<r,◦
κx,ξ

(K)≤h,m → F′ ⊗Rx,0 S
<r,◦
κx,ξ

(K0(Q))≤h,mQ,0

is surjective. But this is a map of vector spaces of the same dimension, so it
is enough to prove injectivity.

The module F′ ⊗R0 S
<r,◦
κx,ξ

(K)≤h,m is a finite module over the artin local ring
Tm/π, so if the kernel of Uϖv −Bv is non-trivial, it contains f ̸= 0 which is
m-torsion. In particular, Tv(f) = (αv + βv)x and Uϖv(f) = βv.

Since
[K0(v)

(
1
ϖv

)
K0(v)] =

∐
α∈kv

(
1

α̃ϖv ϖv

)
K0(v)

where α̃ denotes a lift of α, we have

Uϖvf =
∑
a∈k(v)

(
1

α̃ϖv ϖv

)|f
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But
(

1
α̃ϖv ϖv

)
=

(
1
ϖv

) (
1
α̃ 1

)
and (

1
α̃ 1

)|f = f , since f is fixed by
(
1
α̃ 1

)
∈

GL2(OFv) by assumption, so

Uϖvf = |k(v)|( 1
ϖv

)|f = (
1
ϖv

)|f
Similarly, we have

[GL2(OFv)
(
1
ϖv

)
GL2(OFv)] = (ϖv 1 )GL2(OFv)

⊔ ∐
α∈kv

(
1
α̃ ϖv

)
GL2(OFv)

so
Tvf = (ϖv 1 )

|f +
∑
α∈k(v)

(
1
α̃ ϖv

)|f
Now for any α ∈ k(v),(

1
α̃ ϖv

)|f = (
1
α̃ 1

)(
1
ϖv

)|f = βvf

so

(ϖv 1 )
|f = (Tv − Uϖv)(f) = αvf

But

(ϖv 1 )
|f =

( 1
1 )

(
1
ϖv

)
( 1
1 )
|f = (

1
ϖv

)|f = βvf

since f is fixed by
(
1
ϖv

)
∈ GL2(OFv), so αv = βv, which contradicts our

assumption. □

Corollary 4.2.9. With notation as above, the map∏
v∈Q

(Uϖv −Bv) : S◦
κ,ξ(K)≤h,m → S◦

κ,ξ(K0(Q))≤h,mQ,0

is an isomorphism.

4.3. Varying the level. We record some results on the existence of slope
decompositions as we vary the tame level. Fix a set of places Q as above,
and fix a maximal ideal m ⊂ T which corresponds to the residual Hecke
eigenvalues at some maximal point of XD× . There is a corresponding Galois
representation ρm : GalF → GL2(F) for some finite field F; it is unramified
at all places of Q and the characteristic polynomial of ρm(Frobv) is X2 −
TvX +Nm(v)Sv for all v ∈ Q. After replacing F with a quadratic extension
if necessary, we may assume that each such characteristic polynomial has
roots {αv, βv} in F; we assume that αvβ−1

v /∈ {1,Nm(v)±}.
Let E/Qp be a finite extension with ring of integers OE , uniformizer π, and
residue field containing F, and replace the Hecke algebras T and TQ,0 with
OE ⊗Zp T and OE ⊗OE TQ,0, respectively. Similarly, replace the coefficient
module Dκ with its base-change to OE , so that the Hecke algebras continue
to act (the upshot is that we also base-change the resulting eigenvarieties
from Zp to OE , but we suppress this from the notation). Fix a root αv ∈ F
of each characteristic polynomial, and fix a lift Av ∈ OE of each αv. Then
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we define mQ,0 ⊂ TQ,0 to be the maximal ideal generated by m ∩ TQ,0 and
Uϖv −Av for all v ∈ Q.

Lemma 4.3.1. Fix a central character ξ : A×
F,f/F

× → O(WF )
×. Then there

is an isomorphism X
K,TQ,0
D×,ξ,m

∼−→ X
KQ(0),TQ,0
D×,ξ,mQ,0

, compatible with the respective
morphisms to WF .

Proof. Let Sκ(K)≤h,m := Tm⊗TSκ(K)≤h, and similarly for Sκ(KQ(0))≤h,mQ,0 .
By [Kis09a, Lemma 2.1.7], for any slope h and any sufficiently large classical
weight κ, we have an isomorphism of TQ,0-modules

Sκ(K)≤h,m
∼−→ Sκ(KQ(0))≤h,mQ,0

By construction, classical points are dense in X
K,TQ,0
D×,ξ,m

and X
KQ(0),TQ,0
D×,ξ,mQ,0

, so
we may use [JN19a, Theorem 3.2.1] to construct morphisms of eigenvarieties

X
KQ(0),TQ,0
D×,ξ,mQ,0

→X
K,TQ,0
D×,ξ,m

and
X

K,TQ,0
D×,ξ,m

→X
KQ(0),TQ,0
D×,ξ,mQ,0

These morphisms are mutually inverse, so they are isomorphisms. □

Corollary 4.3.2. Fix a central character ξ : A×
F,f/F

× → O(WF )
×. Let

U = SpaR ⊂ WF be a connected affinoid open, corresponding to a weight κ,
and fix h ∈ Q>0. Then (U, h) is a slope datum for X K

D×,ξ,m
if and only if it

is a slope datum for X
K0(Q)

D×,ξ,mQ,0
.

Proof. We write h = m/n and consider the closed ball BU,h := {|Tn| ≤
|u−m|} ⊂ A1

U . If Z and Z ′ denote the spectral varieties for X K
D×,ξ,m

and

X
K0(Q)

D×,ξ,mQ,0
, respectively, we set ZU,h := Z ∩ BU,h and Z ′

U,h := Z ′ ∩ BU,h.
We need to show that ZU,h → U is finite with constant degree if and only if
Z ′
U,h → U is.

Since the morphisms Z → WF and Z ′ → WF are flat and we have assumed
U is connected, it is enough to prove that ZU,h → U is finite if and only if
Z ′
U,h → U is. To see this, it is enough to show the same statement about the

morphisms Zred
U,h, Z

′,red
U,h → U on the underlying reduced subspaces.

Setting T := OE , we have

Z red = X K,T
D×,ξ,m

and
Z

′,red = X
K0(Q),T
D×,ξ,m

Then as in Lemma 4.3.1, we have an isomorphism X K,T
D×,ξ,m

→ X
K0(Q),T
D×,ξ,m

compatible with the respective morphisms to WF , and the result follows. □
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We may also compare slope data for X
K0(Q)

D× and X
K−(Q)

D× :

Lemma 4.3.3. Fix a central character ξ : A×
F,f/F

× → O(W )×. Let U =

SpaR ⊂ WF be an affinoid open, corresponding to a weight κ, and fix h ∈
Q>0. Then (U, h) is a slope datum for X

K0(Q)
D,ξ if and only if it is a slope

datum for X
K−(Q)
D,ξ .

Proof. Let Z and Z ′ be the spectral varieties for X
K0(Q)
D,ξ and X

K−(Q)
D,ξ ,

respectively, and let x ∈ U be a maximal point. Then by Proposition 4.2.6
the module H0(K−(Q),Dκx)[ξ]≤h is finite projective over kx[∆Q], and the
natural map H0(K−(Q),Dκx)[ξ]≤h,∆Q → H0(K0(Q),Dκx)≤h is an isomor-
phism. It follows that the fiber of Z over x is finite of order d if and only
if the fiber of Z ′ over x is finite of order d|∆Q|. Since spectral varieties are
flat over weight space, the result follows from Theorem 3.1.2. □

5. Patching and modularity

5.1. Set-up. Let us recall our goal. Assume p ≥ 5. Fix a non-archimedean
local field L with ring of integers OL, residue field Fq, and uniformizer u.
Fix a continuous odd representation ρ : GalQ → GL2(Fq), such that:

• ρ is modular
• ρ|GalQ(ζp)

is absolutely irreducible
• The image of ρ contains SL2(Fp)
• ρ is unramified at all places away from p

• ρ ̸∼ χ⊗
(
χcyc ∗

1

)
for any character χ : GalQ → F×

q .

The assumption that ρ has large image is stronger than the typical hypoth-
esis. This is because we need to use [BH17, Theorem B.0.1] to ensure that
we can work with middle-degree eigenvarieties for Hilbert modular forms.

We wish to prove the following modularity theorem:

Theorem 5.1.1. Suppose ρ : GalQ → GL2(OL) is a continuous odd repre-
sentation unramified away from p and trianguline at p with regular parame-
ters, whose reduction modulo u is as above. Then ρ is the twist of a Galois
representation arising from an overconvergent modular form.

The predicted weight κ can be read off from the parameters of the triangu-
lation, as can the predicted slope h.

More precisely, we will show that ρ corresponds to a class in Sκ(K)≤h, where
K = I ·K1(N)p = I ·

∏
ℓ̸=p,ℓ∤N GL2(Qℓ) ·

∏
ℓ|N K1(ℓ) for some N ≥ 5 prime

to p. To do this, we will consider an open weight κ : T0 → O(U)×, where
U ⊂ W contains a point corresponding to κ and (U, h) is a slope datum, and
we will study the spaces Sκ(K−(Q))≤h for varying sets of primes Q.
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5.2. Patched eigenvarieties. In this section, we construct local pieces of
patched quaternionic eigenvarieties, using the language of ultrafilters of [Sch18,
§9]. We fix a totally real field F split at all places above p and a totally defi-
nite quaternion algebra D over F , which is ramified at all infinite places and
split at all finite places. We also fix the tame level Kp := GL2(A

p
F,f ). We

further assume that F/Q is abelian, so that Leopoldt’s conjecture is known
to hold. Unlike [Sch18], we do not assume that F has a unique prime above
p; we let Σp := {v | p}. We expect these hypotheses can be relaxed consider-
ably, but this is not necessary for our applications. Fix some finite extension
E/Qp with residue field containing Fq.

Recall that there are Galois deformation rings R□ρ,Σp and Rρ,Σp , parametriz-
ing deformations of ρ unramified outside of Σp, whereR□ρ additionally parametrizes
framings of the deformations at places of Σp. There is also a local framed
deformation ring R□ρ,loc := ⊗̂v∈Σp R□ρv , where R□ρv parametrizes framed defor-
mations of ρ|GalFv

, and there is a natural map R□ρ,loc → R□ρ .

We define a distinguished family of characters ηuniv : GalF → Zp[[T0/Z(K)]]×

over integral weight space. We have a universal weight λ = (λ1, λ2), where
each λi is a character

∏
v∈Σp O×

Fv
→ Zp[[T0/Z(K)]]×, and we define ηv : O×

Fv
∼=

Z×
p → Zp[[T0/Z(K)]]× via η(x) :=

(
λ1|O×

Fv
(x)λ2|O×

Fv
(x)

)−1
. Then because

we have assumed that Leopoldt’s conjecture holds for F , we see that ηv
is independent of v ∈ Σ; global class field theory gives us a corresponding
character GalQ → Zp[[T0/Z(K)]]×, which we restrict to GalF to obtain ηuniv.

We fix an unramified continuous character ψ0 : GalF → OE [[T0/Z(K)]]× such
that the reduction ψ0 modulo the maximal ideal satisfies det ρ = ψ0ηunivχ

−1
cyc,

and we set ψ := ψ0ηuniv and ψ′ := ψ0ηunivχ
−1
cyc. Then we constructed quo-

tients

OE [[T0/Z(K)]] ⊗̂R□ρ,Σp ↠ R□,ψ
′

ρ,Σp

OE [[T0/Z(K)]] ⊗̂R□ρ,loc ↠ R□,ψ
′

ρ,loc

OE [[T0/Z(K)]] ⊗̂Rρ,Σp ↠ Rψ
′

ρ,Σp

parametrizing families of deformations with fixed determinants.

We also define families of weights κv over WF via

κv = (κv1 , κv,2) =

(
λ2|−1

O×
Fv

, λ1|−1

O×
Fv

χ−1
cyc

)
In order to find sets of Taylor–Wiles primes, we impose the following standard
hypotheses:

(1) p ≥ 5
(2) ρ|F (ζp) is absolutely irreducible
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(3) If p = 5 and ρ has projective image PGL2(F5), the kernel of ρ does
not fix F (ζ5)

Then we have the following relative version of [Kis09a, Proposition 2.2.4]
(since we assumed p splits completely in F , [F : Q] = |Σp|):

Proposition 5.2.1. Let g := dimFq H
1(GalF,Σp , ad

0 ρ(1)) − 1. Then for
each positive integer n, there exists a finite set Qn of places of F , disjoint
from Σp, of cardinality g + 1, such that

(1) for all v ∈ Qn, Nm(v) ≡ 1 (mod pn), and ρ(Frobv) has distinct
eigenvalues

(2) the global relative Galois deformation ring R□,ψ
′

ρ,Σp∪Qn parametrizing
families of deformations with determinant ψ unramified outside Σp∪
Qn can be topologically generated as an R□,ψ

′

ρ,loc-algebra by g elements.

Proof. This follows from Lemma 2.1.1, as in [Kis09b, Proposition 3.2.5]. □

We fix such a set Qn for each n ≥ 1, as well as a non-principal ultrafilter
F on {n ≥ 1} (more precisely, on its power set, ordered by inclusion). For
notational convenience, we set Q0 := ∅, and we let Q′

n := Qn ∪Σp. For each
n, we again let K−(Qn) ⊂ K0(Qn) ⊂ G(Ap

F,f )
∼= GL2(A

p
F,f ) be the compact

open subgroups

K−(Qn) :=
∏
v/∈Qn

GL2(OFv)×
∏
v∈Qn

K−(v) ⊂
∏
v/∈Qn

GL2(OFv)×
∏
v∈Qn

K0(v)

Let ξ : A×
F,f/F

× → O(WF )
× be the central character corresponding to ψ via

class field theory.

Now we analyze the eigenvarieties X
K−(Qn)

D× . Let κ be a weight valued in a
reduced pseudoaffinoid Zp-algebra R, and write U := SpaR. Assume that
the Fredholm determinant corresponding to H0(K,Dκ)[ξ] admits a slope-
≤ h-factorization for some slope h = a/b (where a, b are relatively prime
non-negative integers); by Corollary 4.3.2 and Lemma 4.3.3, the Fredholm
determinants corresponding to H0(K0(Qn),Dκ)[ξ] and H0(K−(Qn),Dκ)[ξ]
also admit slope-≤ h-factorizations. We also assume that R can be equipped
with a norm adapted to κ such that the corresponding unit ball is the ring
of definition R0 = R◦; this is possible, for example, if U is an affinoid open
or a maximal point in WF , by Lemma 4.1.2. Then we fix some r > rκ.

The modularity of the residual representation ρ means that ρ corresponds
to a maximal ideal m ⊂ T. For each v ∈ Qn, we fix a root αv of the
characteristic polynomial X2 − TvX +Nm(v)Sv of ρ(Frobv) (increasing Fq,
and hence E, if necessary), and we consider the corresponding maximal ideal
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mQn ⊂ T−
Qn

(as in § 3.6). Then we have a collection of diagrams

OE ×X
K−(Qn)

D×,ξ,mQn

∐
ρ SpaRρ,Qn∪Σp

OE ×WF

wt

The pre-image wt−1(U) in the slope-≤ h part of the eigenvariety has the
form Spa

(
TK−(Qn),κ,ξ,≤h,T◦

K−(Qn),κ,ξ,≤h

)
, and since X

K−(Qn)

D×,ξ,mQn
is reduced,

T◦
K−(Qn),κ,ξ,≤h ⊂ TK−(Qn),κ,ξ,≤h is a ring of definition.

For each n, the module of overconvergent modular forms Sκ,ξ(K−(Qn))≤h
is a TK−(Qn),κ,ξ,≤h-module, and it is projective as an R-module; let d be its
rank over R. The T<r,◦

K−(Qn),κ,ξ,≤h-submodule S<r,◦κ,ξ (K−(Qn))≤h is a lattice in
Sκ,ξ(K

−(Qn))≤h. Recall from Definition 4.1.3 that there is a second lattice

S◦
κ,ξ(K

−(Qn))≤h :=
∑
v|p

∑
i≥0

(uaU−b
ϖv)

i
(
S<r,◦κ,ξ (K−(Qn))≤h

)
which is stable under the operators uaU−b

ϖv , as well.

LetRψ
′

ρ,Q′
n
|U denote the localizationR0 ⊗̂OE [[T0/Z(K)]]

Rψ
′

ρ,Q′
n
; the formal scheme

Spf Rψ
′

ρ,Q′
n
|U is an integral model for the pseudorigid space U × SpaRψ

′

ρ,Q′
n
.

Similarly, we will writeR□,ψ
′,κ

tri,ρ,Q′
n,≤h
|U for the localizationR0 ⊗̂OE [[T0/Z(K)]]

R
□,ψ′,κ
tri,ρ,Q′

n,≤h

and R□,ψ
′,κ

tri,ρ,loc,≤h|U for the localization R0 ⊗̂OE [[T0/Z(K)]]
R
□,ψ′,κ
tri,ρ,loc,≤h. Using the

existence of Galois representations, we see that T◦
K−(Qn),κ,ξ,≤h is a Rψ

′

ρ,Q′
n
|U -

algebra.

By Lemma 4.2.6 S<r,◦κ,ξ (K−(Qn))≤h,m−
Qn

is a finite R0[∆Qn ]-module, with

R0 ⊗R0[∆Qn ]
S<r,◦κ,ξ (K−(Qn))≤h,m−

Qn

∼= S<r,◦κ,ξ (K0(Qn))≤h,m0,Qn

Since the augmentation ideal I∆Qn is contained in the Jacobson radical of
R0[∆Qn ], this implies that S<r,◦κ,ξ (K0(Qn))≤h,m0,Qn

and S<r,◦κ,ξ (K−(Qn))≤h,m−
Qn

can be generated by the same number of elements (over R0 and R0[∆Qn ],
respectively).

Similarly, S◦
κ,ξ(K

−(Qn))≤h,m−
Qn

is a finiteR0[∆Qn ]-module. Since S◦
κ,ξ(K

−(Qn))≤h,m−
Qn

is generated by d|Σp| translates of S<r,◦κ,ξ (K−(Qn))≤h,m−
Qn

, we see that the

number of generators of S◦
κ,ξ(K

−(Qn))≤h,m−
Qn

over R0[∆Qn ] is bounded in-
dependently of n.

Set j = 4|Σp| − 1 and k = |Qn| = g + 1. Using local-global compatibility at
places in Qn, there is a homomorphism R0 ⊗̂Zp[[y1, . . . , yk]]→ Rψ

′

ρ,Q′
n
|U such
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that the action of R0 ⊗̂Zp[[y1, . . . , yk]] on S◦
κ,ξ(K

−(Qn))
◦
≤h,m−

Qn

is compatible

with the action of R0[∆Qn ] via a fixed surjection R0 ⊗̂Zp[[y1, . . . , yk]] →
R0[∆Qn ].

We observe that we may view Sκ,ξ(K
−(Qn))≤h,m−

Qn
as a module over SpaR[∆Q]×U

CU,h, where CU,h is the annulus of radius h, by letting the coordinate on CU,h
act as U−1

p .

Now we consider local-global compatibility at places in Σp. Recall that
the actions of uaU bϖv and uaU−b

ϖv on Sκ,ξ(K
−(Qn))≤h are power-bounded

for all v | p. Thus, we can make S◦
κ,ξ(K

−(Qn))≤h,m−
Qn

into a module over

Rψ
′

ρ,Q′
n
|U

〈
phT±1

1 , . . . , phT±1
|Σp|

〉
by letting Ti act as U−1

ϖvi
. But local-global

compatibility tells that over the analytic locus, Sκ,ξ(K−(Qn)) is supported
on the trianguline locus, so S◦

κ,ξ(K
−(Qn))≤h,m−

Qn
is actually a Rψ

′,κ
tri,ρ,Q′

n,≤h
|U -

module, where the coordinates of GΣp
m act as U−1

ϖv .

Since Rψ
′

ρ,Q′
n
→ R□,ψ

′

ρ,Q′
n

is formally smooth of dimension j, we may construct
a homomorphism

R0 ⊗̂Zp[[y1, . . . , yk, yk+1, . . . , yk+j ]]→ R
□,ψ′,κ
tri,ρ,Q′

n,≤h
|U

compatible with
R0 ⊗̂Zp[[y1, . . . , yk]]→ Rψ

′

ρ,Q′
n
|U

such that yk+1, . . . , yk+j are the framing variables. Finally, we fix a surjection
R□,ψ

′

ρ,loc[[x1, . . . , xg]]↠ R□,ψ
′

ρ,Q′
n

and a mapR0 ⊗̂Zp[[y1, . . . , yk+j ]]→ R□,ψ
′

ρ,loc[[x1, . . . , xg]]

such that the corresponding diagram

R0 ⊗̂Zp[[y1, . . . , yk+j ]] R
□,ψ′,κ
tri,ρ,loc,≤h[[x1, . . . , xg]]|U

R
□,ψ′,κ
tri,ρ,Q′

n,≤h
|U

commutes.

Now we can patch. We add framing variables by setting

M<r
n := Zp[[yk+1, . . . , yk+j ]] ⊗̂

Zp
S<r,◦κ,ξ (K−

Qn
)≤h,m−

Qn

and
Mn := Zp[[yk+1, . . . , yk+j ]] ⊗̂

Zp
S◦
κ,ξ(K

−
Qn

)≤h,m−
Qn

so that
R0 ⊗R0 ⊗̂Zp[[y1,...,yk+j ]]

M<r
n
∼= S<r,◦κ,ξ (K)≤h,m

for all n ≥ 1, and

R0 ⊗R0 ⊗̂Zp[[y1,...,yk+j ]]
Mn ↠ S◦

κ,ξ(K)≤h,m
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for all n ≥ 1.

For any open ideal I ⊂ R0 ⊗̂Zp[[yi]], we define

M<r
I := R0 ⊗̂Zp[[yi]]/I ⊗∏

n≥1R0 ⊗̂Zp[[yi]]/I

∏
n

M<r
n /I

and
MI := R0 ⊗̂Zp[[yi]]/I ⊗∏

n≥1R0 ⊗̂Zp[[yi]]/I

∏
n

Mn/I

Here the homomorphism
∏
n≥1R0 ⊗̂Zp[[yi]]/I → R0 ⊗̂Zp[[yi]]/I is the local-

ization map coming from our choice of non-principal ultrafilter.

Passing to the inverse limit, we obtain the patched modules

M<r
∞ := lim←−

I

M<r
I

and
M∞ := lim←−

I

MI

Similarly, we may define patched global deformation rings R□,ψ
′,κ

tri,ρ,∞,≤h,I |U and
Hecke algebras T<r,◦∞,κ,≤h,I and T◦

∞,κ,≤h,I via

R
□,ψ′,κ
tri,ρ,∞,≤h,I |U := R0 ⊗̂Zp[[yi]]/I ⊗∏

n≥1R0 ⊗̂Zp[[yi]]/I

∏
n

R
□,ψ′,κ
tri,ρ,Q′

n,≤h
|U/I

T<r,◦∞,κ,≤h,I := R0 ⊗̂Zp[[yi]]/I ⊗∏
n≥1R0 ⊗̂Zp[[yi]]/I

∏
n

T<r,◦
K−(Qn),κ,≤h/I

T◦
∞,κ,≤h,I := R0 ⊗̂Zp[[yi]]/I ⊗∏

n≥1R0 ⊗̂Zp[[yi]]/I

∏
n

T◦
K−(Qn),κ,≤h/I

Setting R□,ψ
′,κ

tri,ρ,∞,≤h|U := lim←−I R
□,ψ′,κ
tri,ρ,∞,≤h,I |U , T<r,◦∞,κ,≤h := lim←−I T

<r,◦
∞,κ,≤h,I , and

T◦
∞,κ,≤h := lim←−I T

◦
∞,κ,≤h,I , we have a sequence of homomorphisms

R0 ⊗̂Zp[[yi]]→ R
□,ψ′,κ
tri,ρ,loc,≤h[[xi]]|U → R

□,ψ′,κ
tri,ρ,∞,≤h|U → T◦

∞,κ

compatible with their actions on M∞.

Note that for each open ideal I, we have a surjection

R
□,ψ′,κ
tri,ρ,loc,≤h[[xi]]|U/I ↠ R

□,ψ′,κ
tri,ρ,∞,≤h,I |U

Hence we have a surjection

R
□,ψ′,κ
tri,ρ,loc,≤h[[xi]]|U ↠ R

□,ψ′,κ
tri,ρ,∞,≤h|U

and a closed immersion

X
□,ψ′,κ
tri,ρ,∞,≤h|U :=

(
SpaR

□,ψ′,κ
tri,ρ,∞,≤h|U

)an
↪→ X

□,ψ′,κ
tri,ρ,loc,≤h[[xi]]|U

Furthermore, since R□,ψ
′,κ

tri,ρ,Q′
n,≤h
|U/(yi) ∼= R

□,ψ′,κ
tri,ρ,Σp,≤h|U for all n, we see that

R
□,ψ′,κ
tri,ρ,∞,≤h|U/(yi) ∼= R

□,ψ′,κ
tri,ρ,Σp,≤h|U .
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Lemma 5.2.2. The patched modules M<r
∞ and M∞ are finite over R0 ⊗̂Zp[[yi]].

In particular, they are complete.

Proof. The powers of the ideal (u, y1, . . . , yk+j) are cofinal in the set of open
ideals of R0 ⊗̂Zp[[yi]], and for any open ideals I ⊂ I ′ ⊂ R0 ⊗̂Zp[[yi]], the natu-
ral maps M<r

I /I ′ →M<r
I′ and MI/I

′ →MI′ are isomorphisms. Then [Sta18,
Tag 09B8] implies that M<r

∞ and M∞ are complete and M<r
∞ /I ∼=M<r

I and
M∞/I ∼=MI for all open ideals I ⊂ R0 ⊗̂Zp[[yi]].

We have

M<r
∞ /(u, y1, . . . , yk+j) ∼=M<r

(u,y1,...,yk+j)
∼= S<r,◦κ,ξ (K)≤h,m/u

which is R0-finite. Since the number of generators of Mn/(u, y1, . . . , yk+j)
over R0 is bounded independently of n, M∞/(u, y1, . . . , yk+j) is R0-finite.
Hence by [Mat89, Theorem 8.4], M<r

∞ and M∞ are R0 ⊗̂Zp[[yi]]-finite. □

Proposition 5.2.3. If R = L is a field with ring of integers OL, then M<r
∞

is a finite projective OL[[y1, . . . , yk+j ]]-module.

Proof. We claim it is enough to show that for any open ideal I, M<r
n /I is a

free OL[[yi]]/I-module of rank d for all n≫ 0. Indeed, because our ultrafilter
is non-principal, this implies that M<r

I is also a free OL[[yi]]/I-module of
rank d (since the localization

∏
n≥1 OL[[yi]]/I → OL[[yi]]/I factors through

the localization
∏
n≥1 OL[[yi]]/I →

∏
n≥n0

OL[[yi]]/I for any n0 ≥ 1). Since
M<r

∞ is (u, y1, . . . , yk+j)-adically separated, [Mat89, Theorem 22.3] implies
that M<r

∞ is flat over OL[[yi]], and hence projective.

By Proposition 4.2.6, S<r,◦κ,ξ (K−(Qn))≤h is a projective R0[∆Qn ]-module of
rank d for all n. Then for n≫ 0 (depending on I), M<r

n /I is free over OL[[yi]]
of rank d, so we are done. □

The modules M<r
∞ and M∞ behave well under finite base change, in partic-

ular, under passage to closed subspaces of U :

Lemma 5.2.4. Let f : R0 → R′
0 be a finite morphism, where R′

0 is a
noetherian ring of definition in a pseudoaffinoid algebra. Let κ′ be the weight
f ◦κ, and let M ′

∞
<r denote the patched module constructed from the modules

of modular forms S<r,◦κ′,ξ (K
−
Qn

)≤h,m−
Qn

. Then the natural maps

R′
0 ⊗̂Zp[[yi]]⊗R0 ⊗̂Zp[[yi]]

M<r
∞ →M<r

∞
′

and
R′

0 ⊗̂Zp[[yi]]⊗R0 ⊗̂Zp[[yi]]
M∞ →M ′

∞

are surjections.

Proof. We treat the first map; the second is similar. LetM ′
n := Zp[[yk+1, . . . , yk+j ]]⊗Zp

S<r,◦κ′,ξ (K
−
Qn

)≤h,m−
Qn

. The open ideals I ⊂ R0 ⊗̂Zp[[yi]] generate open ideals of



MODULARITY OF TRIANGULINE GALOIS REPRESENTATIONS 57

R′
0 ⊗̂Zp[[yi]] and are cofinal, so it suffices to show that we have a surjection

R′
0 ⊗̂Zp[[yi]]/I⊗R0 ⊗̂Zp[[yi]]/I

MI →M ′
I :=

(
R′

0 ⊗̂Zp[[yi]]/I
)
⊗∏

n≥1R
′
0 ⊗̂Zp[[yi]]/I

∏
n≥1

M ′
n/I

The left side is isomorphic to R′
0 ⊗R0 MI (because R0 ⊗̂Zp[[yi]]/I is dis-

crete, by construction). Since each map R′
0 ⊗R0 Mn → M ′

n is surjective
(by Lemma 4.2.3, and since the transition maps

∏k+1
n=1Mn →

∏k
n=1Mn are

surjective, the Mittag-Leffler condition implies that the natural map

R′
0 ⊗R0 MI →M ′

I

is surjective. □

We have contructed two coherent R0 ⊗̂Zp[[yi]]-modules, M<r
∞ and M∞; M∞

is naturally a R□,ψ
′,κ

tri,ρ,∞,≤h|U -module, but M<r
∞ is projective when U is a point,

making its support over R0 ⊗̂Zp[[yi]] easier to analyze.

We now pass to the loci of the corresponding map

SpaR
□,ψ′,κ
tri,ρ,loc,≤h[[xi]]|U → SpaR0 ⊗̂Zp[[yi]]

where u ̸= 0, and we consider the analytification Man
∞ of M∞ as a coherent

sheaf over X□,ψ
′,κ

tri,ρ,loc,≤h|U × SpaZp[[xi]].

Lemma 5.2.5. The support of Man
∞ is a Zariski-closed subspace of dimension

dimSpaR0 ⊗̂Zp[[yi]]

[
1

u

]
= dimU +(g+1)+(4|Σp|−1) = dimU +g+4|Σp|

Proof. If x : R → L is a maximal point, and OL is the ring of integers of
L, it suffices to show that OL ⊗R0 M∞ is supported on all of SpecOL[[yi]].
We set κ′ := x ◦ κ and we let M ′

∞
<r and M ′

∞ be the patched modules con-
structed from the modules S<r,◦κ′,ξ (K

−(Qn))≤h,m−
Qn

and S◦
κ′,ξ(K

−(Qn))≤h,m−
Qn

,
respectively. Since the natural map

OL ⊗R0 M∞ →M ′
∞

is surjective, it suffices to show that M ′
∞ is supported on all of SpecOL[[yi]].

To see this, we consider the natural morphism M ′
∞
<r →M ′

∞.

We will show that M ′
∞
<r → M ′

∞ is an isomorphism over a dense open
subspace of SpecOL[[yi]]. Let Pn be the cokernel of M ′

n
<r → M ′

n, and let P
be the cokernel of M ′

∞
<r →M ′

∞. Since the cokernel of

S<r,◦κ,ξ (K−(Qn))≤h,m−
Qn
→ S◦

κ,ξ(K
−(Qn))≤h,m−

Qn

is finite and u-power-torsion, Pn is also u-power-torsion.

There is some integer k0 ≥ 0 such that

uk0S◦
κ′,ξ(K0(Qn))≤h,m0,Qn

⊂ S<r.◦κ′,ξ (K0(Qn))≤h,m0,Qn
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and by Corollary 4.2.7 the kernel of(
S◦
κ,ξ(K

−(Qn))≤h,m−
Qn

)
∆Qn

→ S◦
κ′,ξ(K0(Qn))≤h,m0,Qn

is annhilated by u(d−1)a. Hence there is some N ≫ 0 such that uNPn ⊂
(yi)Pn for all n, and by devissage, the modules Pn/(yi)kPn are annhilated
by ukN for all k, n ≥ 0.

Next, we observe that we have exact sequences

0→M<r
n /(yi)

k →Mn/(yi)
k → Pn/(yi)

k → 0

for all n. Indeed, there are surjections

Tor
OL[[yi]]
1 (OL[[yi]]/(yi)

k, Pn)↠ ker
(
M<r
n /(yi)

k →Mn/(yi)
k
)

But M<r
n is projective over OL[[y1]], so M<r

n /(yi)
k has no u-torsion, whereas

Tor
OL[[yi]]
1 (OL[[yi]]/(yi)

k, Pn) is entirely u-power-torsion, because Pn is.

Let Jk ⊂ OL[[yi]] be the ideal generated by uNk and (yi)
k. Then the Tor long

exact sequence gives us exact sequences

Tor
OL[[yi]]/(yi)

k

1

(
Pn/(yi)

k,OL[[yi]]/Jk

)
→M ′

n
<r
/Jk →M ′

n/Jk → Pn/Jk → 0

Moreover,

Tor
OL[[yi]]/(yi)

k

1

(
Pn/(yi)

k,OL[[yi]]/Jk

)
= (Pn/(yi)

k)[uNk] = Pn = Pn/Jk

Let PJk denote the localization of
∏
n≥1 Pn/Jk at the ideal corresponding to

our chosen ultrafilter. We have an exact sequence

PJk →M ′
Jk
<r →M ′

Jk
→ PJk → 0

and since the set {Jk} is cofinal in the set of open ideals of OL[[yi]], an exact
sequence

P →M ′
∞
<r →M ′

∞ → P → 0

But since uNP ⊂ (yi)P , P is supported on a proper closed subscheme of
Spf OL[[yi]]; away from the support of P , the map M ′

∞
<r → M ′

∞ is an
isomorphism, as desired. □

The support of Man
∞ over X□,ψ

′,κ
tri,ρ,loc,≤h|U × SpaZp[[xi]] is a Zariski-closed sub-

space, whose dimension must therefore be

dimSpaR0 ⊗̂Zp[[yi]]

[
1

u

]
= dimU + g + 4|Σp|

But the morphism X
□,ψ′,κ
tri,ρ,loc|U → U has relative dimension 4|Σp| over an open

subspace of U by Proposition 2.3.5, so any non-empty irreducible components
have total dimension dimU + 4|Σp|. It follows that the support of Man

∞ on
X
□,ψ′,κ
tri,ρ,loc,≤h|U × SpaZp[[xi]] is the union of irreducible components.
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Finally, since we have a closed embedding

X
□,ψ′,κ
tri,ρ,∞,≤h|U ↪→ X

□,ψ′,κ
tri,ρ,loc,≤h|U × SpaZp[[xi]]

we conclude that the support of M∞ on X
□,ψ,κ
tri,ρ,∞,≤h|U is also a union of

irreducible components, which we denote X ∞,ψ,κ

D×,U,≤h.

We have a sequence of morphisms

X
□,ψ′,κ
tri,ρ,∞|U ↪→ X

□,ψ′,κ
tri,ρ,loc|U × SpaZp[[xi]]→ Gad

m,U × SpaZp[[yi]]

(where we send the product of the factors of Gad
m in the definition of the

trianguline varieties to the factor of Gad
m on the right, corresponding to the

action of U−1
p ); M∞ is a finite module on X

□,ψ′,κ
tri,ρ,∞|U whose pushforward to

Gad
m,U × SpaZp[[yi]] is also finite.

We summarize this discussion:

Theorem 5.2.6. There is a space X ∞,ψ,κ

D×,U,≤h (which we call the patched

eigenvariety over U), a finite module M∞ supported on X ∞,ψ,κ

D×,U,≤h, (which
we call the patched module) and a morphism

X ∞,ψ,κ

D×,U,≤h → SpaX
□,ψ′,κ
tri,ρ,loc,≤h|U × SpaZp[[xi]]

whose image is the union of irreducible components.

Since this morphism factors through the global trianguline variety, we also
deduce the following corollary:

Corollary 5.2.7. The support of M∞/(y1, . . . , yk) in the trianguline vari-
ety over X□,ψ

′,κ
tri,ρ,∞,≤h|U/(y1, . . . , yk) ∼= X

□,ψ′,κ
tri,Σp,ρ,≤h|U is a union of irreducible

components.

Remark 5.2.8. We carried out this construction locally, because it is diffi-
cult to study the behavior of M<r

∞ and M∞ under rational localization; we
have not checked that the analytic patched modules Man

∞ form a coherent
sheaf. However, because specialization maps induce surjections on patched
modules, as (U, h) varies over slope data, the supports of patched modules
glue to a global patched eigenvariety X ∞,ψ,κ

D× .

5.3. Modularity. We are now in a position to prove Theorem 5.1.1. We
will say that a Galois representation ρ is modular if it comes from a point
on the extended eigenvariety.

Proposition 5.3.1. Let F/Q be a real quadratic extension split at p, such
that the image of ρ|GalF contains SL2(Fp). Then ρ : GalQ → GL2(L) is
modular if and only if ρ|GalF is modular.
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Proof. We have the cyclic base-change morphism XGL2 /Q,cusp →XGL2 /F,mid

from §3.4, so if ρ corresponds to x ∈ XGL2 /Q,cusp, then ρ|GalF corresponds
to the image of x in XGL2 /F,mid. To show the other direction, we note that
if ρ|GalF is associated to x′ ∈ XGL2 /F , then the corresponding eigenvalues
are fixed by Gal(F/Q). Since we assumed that the image of ρ|GalF con-
tains SL2(Fp), by [BH17, Theorem B.0.1] we may apply Corollary 3.4.8 to
conclude that x′ is in the image of XGL2 /Q,cusp. □

Choose F/Q a real quadratic extension split at p. We may additionally
choose F such that the image of ρ|GalF contains SL2(Fp), by requiring that
ℓ splits in F for ℓ in some finite set of primes S of Q such that {ρ(Frobℓ)}ℓ∈S
generate SL2(Fp). Maintaining the notation of the previous section, we let
D/F be a totally definite quaternion algebra, split at all finite places, and
we let R := OE [[T0/Z(K)]]. The Jacquet–Langlands correspondence gives us
a morphism of eigenvarieties XD× → XGL2 /F , so it suffices to show that
ρ|GalF corresponds to a point on XD× .

Theorem 5.3.2. ρ|GalF corresponds to a point on XD× .

Remark 5.3.3. There is some h ∈ Q≥0 such that ρ|GalFv
is trianguline

with parameter of slope-≤ h for each v | p, and there is some open affinoid
U ⊂ WF containing the weight of ρ|GalFv

such that (U, h) is a slope datum
for XD× . In the following proof, we will work with a patched eigenvariety

X
□,ψ′,κ
tri,ρ,∞,≤h|U . However, since our arguments only require working sufficiently

close to the boundary, we are always free to shrink U (or increase h). For
compactness of exposition and notation, we therefore suppress (U, h) from
the proof.

Proof. Let ρ0 := ρ|GalF . We have assumed that ρ|GalQp
is trianguline, so we

may write Drig(ρ|GalQp
) as an extension of rank-1 (φ,Γ)-modules:

0→ ΛL,rig(δ1)→ Drig(ρ|GalQp
)→ ΛL,rig(δ2)→ 0

for characters δ1, δ2 : Q×
p ⇒ L×. After twisting, we may assume that

δ1|Z×
p

is trivial. We fix a weight κ0 according to δ1|Z×
p

and δ2|Z×
p
, and

we fix an unramified character ψ0 : GalF → OE [[T0/Z(K)]]× deforming
χcycκ0,1κ0,2 det ρ|GalF .

It is enough to show that the point x0 ∈ X□,ψ
′,κ

tri,ρ0
corresponding to ρ0 is in

the support of the patched module M∞. To see this, we treat separately the
cases when ρ is ordinary or non-ordinary at p.

We first assume that ρ is ordinary at p. Then ρ0|GalFv
has the form

0→ χ1,v → ρ0|GalFv
→ χ2,v → 0

for each v | p, where χi,v : GalFv ⇒ O×
E are characters.
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We wish to consider the slope-0 trianguline variety, which is the same as con-
sidering ordinary deformations of these extensions (with determinant fixed).
The characters χi,v|OFv deform over weight space, and the unramified char-
acters specified by χ1,v(p) correspond to a point on Spf OE [[{tv}v|p]]. Note
that since we specify a determinant at every point of weight space, deforming
χ1,v(p) also uniquely deforms χ2,v(p).

Thus, we see that the space

Spf OE [[T0/Z(K), {tv}v|p]]

is the moduli space of pairs of characters. Moreover, away from a Zariski-
closed subspace of this space, the space of extensions of the universal char-
acters is a rank-1 vector bundle. In particular, since κ0 is regular, over
an open neighborhood of κ0 in WF , this moduli space is irreducible (and
contains the point corresponding to ρ0). Adding framing variables and pass-
ing from extensions to Galois representations preserve irreducibility of the
moduli space.

Thus, it suffices to show that the ordinary patched module for some charac-
teristic 0 weight κ1 sufficiently near the boundary is supported on the fiber of
this moduli space. We choose κ1 so that it is parallel. But the ordinary part
of the Coleman–Mazur eigencurve is finite flat and surjective over weight
space, so we may choose ordinary overconvergent eigenforms of appropriate
weight and transfer them to D×, where they contribute to the support of
the patchd module, as desired.

We now assume that ρ is not ordinary at p, so that ρ0 is not ordinary at either
place above p. Since the parameters of Drig(ρ) were assumed regular, x0 is a
smooth point of X□,ψ

′,κ
tri,ρ0,loc

. Therefore, x0 is contained in a unique irreducible

component V of X□,ψ
′,κ

tri,ρ0,loc
, and we can find an open affinoid neighborhood

V ′ ⊂ V of x0 so that V ′ contains no ordinary parameters.

It follows that ρ0 can be analytically deformed to characteristic 0 (as in
Example 2.3.4). In fact, the morphism X

□,ψ′,κ
tri,ρ0,loc

→ WF is smooth in a
neighborhood of x0; in particular, it is open, and we may assume that the
weights corresponding to the first term in the triangulation remain trivial as
we deform, at both places above p.

Recall that for any p-adic field K/Qp, given a character δ : K× → Q
×
p , its

weight (wtσ(δ))σ:K↪→Qp
is the tuple such that

lim
a→0

|δ(1 + a)− 1 +
∑

σ wtσ(δ)σ(a)|
|a|

= 0

We say that δ is locally algebraic of weight (kσ)σ if wtσ(δ) = kσ ∈ Z for
all σ; equivalently, the restriction of δ to some open subgroup of O×

K is
χk := x 7→

∏
σ σ(x)

−kσ . If δ is the parameter of a trianguline (φ,Γ)-module,
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we say that it is locally algebraic of strongly dominant weight if δi,σ is locally
algebraic of weight (ki,σ) and ki,σ < ki+1,σ, for all i and σ.

We claim that there is some locally algebraic strongly dominant κ1 ∈ W rig
F

such that the fiber V rig|κ1 is equidimensional of dimension 8. Indeed, since
we chose a deformation of (ρ0, δ) keeping δ1|O×

F,p
trivial, it is enough to see

that there are points of Spf Zp[[Z×
p ]]

rig which are locally algebraic of positive
weight arbitrarily close to the boundary, which follows from the calculations
of e.g. [JN19b, §2.7]. In fact, we can choose κ1 to be locally algebraic of
weights {0, 1} at both places above p.

We further claim that we may assume that V ′,rig|κ1 consists of points cor-
responding to Galois representations which are potentially Barsotti–Tate
at both places above p. Indeed, 2-dimensional (characteristic 0) (φ,ΓQp)-
modules are classified in [Col08, §3.3], and after possibly replacing κ1 with
a weight closer to the boundary which is locally algbraic of weights {0, 1},
the corresponding (φ,ΓQp)-modules are crystabelline.

Now it suffices to show that the patched module for weight κ1 is supported
on all of V ′,rig|κ1 . But a dense open subspace of V ′,rig|κ1 is a subspace of
the generic fiber of one of the potentially Barsotti–Tate deformation rings
constructed in [Kis09c]. To see this, we may apply [Kis09b, Theorem 3.4.11]
(with some hypotheses relaxed in [Gee06]). □

Appendix A. Extensions of Zariski-closed subsets

The paper [Lou17] proves Riemann extension theorems for functions on nor-
mal pseudorigid spaces and normal excellent formal schemes; in this appen-
dix we use those results to extend certain Zariski-closed adic subsets (in the
sense of [JN19a, §2.1]) of pseudorigid spaces over missing subsets of codi-
mension at least 2.

Proposition A.0.1. Let X be a normal excellent formal scheme, which is
nowhere discrete. If Z ⊂ X := Xan is a Zariski-closed adic subset, then there
is a closed formal subscheme Z ⊂ X such that Z = Zan.

Proof of Proposition A.0.1. We may assume that X = Spf R, where R is a
normal excellent domain with ideal of definition J = (f1, . . . , fn). Then by
the definitions of [JN19a, §2.1], there is a coherent sheaf I ⊂ OX of ideals
such that Z = {x ∈ X | Ix ̸= OX,x}. We need to show that there is an ideal
I ⊂ R whose associated sheaf agrees with I on X.

We define I+ := I ∩O+
X , and we set I := Γ(X, I+); by [Lou17, Proposition

6.2], R = Γ(X,O+
X), so we may view I as an ideal of R. It remains to show

that for each affinoid open subspace SpaR′ ⊂ X, R′ ⊗R I = I(SpaR′). To
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see this, we observe that we have a finite cover X = ∪i SpaR
〈
J
fi

〉
, so it

suffices to check this with R′ = SpaR
〈
J
fi

〉
.

Setting Ri := R
〈
J
fi

〉
and Ui = SpaR

〈
J
fi

〉
, we have an exact sequence of

R-modules
0→ I →

∏
i

I+(Ui)⇒
∏
i,j

I+(Ui ∩ Uj)

For any fixed index i0, we may tensor with R◦
i0

and complete fi0-adically; as
R is noetherian, our sequence

0→ R◦
i0 ⊗̂
R
I →

∏
i

(
R◦
i0 ⊗̂
R
I+(Ui)

)
⇒

∏
i,j

(
R◦
i0 ⊗̂
R
I+(Ui ∩ Uj)

)
remains exact. But R◦

i0
⊗̂R I+(Ui) generates I(Ui0 ∩Ui) and R◦

i0
⊗̂R I+(Ui∩

Uj) generates I(Ui0 ∩Ui ∩Uj) after inverting a pseudouniformizer ui0 of Ri0
for all i, j, and {Ui0 ∩ Ui}i is a cover of Ui0 , so in fact Ri0 ⊗̂R I = I(Ui0), as
desired. □

Corollary A.0.2. Let E be a p-adic field, let X = SpaR1, where R1 :=
OE [[x1, . . . , xn1 ]] ⟨y1, . . . , yn2⟩ /I, and let Y := SpaR2, where R2 = OE [[z1, . . . , zm1 ]] ⟨w1, . . . , wm2⟩ /J .
Suppose that R1 has dimension at least 2. Suppose that Z ⊂ Xan ×OE Y
is a Zariski-closed subset and that there is some integer N ≥ 1 such that
Z ∩ SpaR1

〈 p
u ,

{
xi
u

}〉 [
1
u

]
× Y is contained in the rational domain {zNj ≤

u ̸= 0 for all j = 1, . . . ,m} for each u ∈ {ϖE , x1, . . . , xn1}. Then there is a
closed formal subscheme Z ⊂ X ⊗̂OE Y such that Zan∩(SpaR1)

an×OEY = Z

(where the intersection is taken inside
(
SpaR1 ⊗̂OE R2

)an).
Proof. Replacing Z with Z ∩ V (I)an ∩ V (J)an, we may assume that I =
J = (0), so that R1 = OE [[{xi}]] ⟨{yk}⟩ and R2 = OE [[{zj}]] ⟨{wℓ}⟩. Then
by Proposition A.0.1 it suffices to extend Z to a Zariski-closed subset of(
SpaR1 ⊗̂OE R2

)an. This analytic locus, in turn, is covered by the affinoid
pseudorigid spaces

Vu := SpaOE [[{xi}i, {zj}j ]]
〈
ϖE

u
,
{xi
u

}
i
, {yk}k,

{zj
u

}
j
, {wℓ}ℓ

〉[
1

u

]
for u ∈ {ϖE , x1, . . . , xn1} and

Vzj0 := SpaOE [[{xi}i, {zj}j ]]

〈
ϖE

zj0
,

{
xi
zj0

}
i

, {yk}k,
{
zj
zj0

}
j

, {wℓ}ℓ

〉[
1

zj0

]
for j0 = 1, . . . ,m. Since the Vu are contained in (SpaR1)

an×OE R2, we only
need to extend the intersections Z ∩ Vzj0 to Zariski-closed subsets of Vzj0 .
We can cover each Vzj0 by its open subspaces defined by inequalities

Vzj0 ,ϖE ,1 := {|z
N+1
j0
| ≤ |ϖE |}, Vzj0 ,i,1 := {|z

N+1
j0
| ≤ |xi|}
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for i = 1, . . . , n1 and

Vzj0 ,2 := {|ϖE | ≤ |zN+1
j0
| ≠ 0 and |xi| ≤ |zN+1

j0
| ≠ 0 for all i}

so it suffices to find suitable Zariski-closed subsets of each of these spaces.

By assumption, Z ∩ Vzj0 ,2 is empty. Moreover,

Vzj0 ,p,1 ⊂ (SpaR1)
an ×OE R2

and
Vzj0 ,i,1 ⊂ (SpaR1)

an ×OE R2

since the conditions |zN+1
j0
| ≤ |ϖE | and zj0 ̸= 0 imply ϖE ̸= 0 (and similarly

for {|zN+1
j0
| ≤ |xi|} and zj0 ̸= 0). Thus, Z ∩ Vzj0 ,p,2, Z ∩ Vzj0 ,i,2 are defined

by sheaves of ideals which agree on intersections Vzj0 ,i,1 ∩ Vzj0 ,i′,1.
By construction, these sheaves agree on the overlaps Vzj0 ,p,1 ∩ Vzj0 ,p,2 =

{|zN+1
j0
| = |ϖE |} and Vzj0 ,i,1 ∩ Vzj0 ,i,2 = {|zN+1

j0
| = |xi|}. We have therefore

extended the sheaf of ideals defining Z ∩Vzj0 ∩ (SpaR1)
an×OE R2 to a sheaf

of ideals on all of Vzj0 , as desired. □
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