MODULARITY OF TRIANGULINE GALOIS
REPRESENTATIONS

REBECCA BELLOVIN

ABSTRACT. We use the theory of trianguline (¢, I')-modules over pseu-
dorigid spaces to prove a modularity lifting theorem for certain Galois
representations which are trianguline at p, including those with charac-
teristic p coefficients. The use of pseudorigid spaces lets us construct
integral models of the trianguline varieties of [BHS17|, [Chel3| after
bounding the slope, and we carry out a Taylor—Wiles patching argu-
ment for families of overconvergent modular forms. This permits us to
construct a patched quaternionic eigenvariety and deduce our modular-
ity results.

1. INTRODUCTION

The Fontaine-Mazur conjecture predicts that representations of Galois groups
of number fields which are sufficiently nice should come from geometry. In
practice, the way one proves this is by proving so-called automorphy lifting
theorems, relating the Galois representations of interest to Galois represen-
tations already known to have the desired properties.

In this context, if p : Galp — GLn(Qp) is the representation, “sufficiently
nice” includes a condition on the local Galois group at p called being geo-
metric. In the present paper, motivated by a question of Andreatta—lovita—
Pilloni [AIP1S|, we consider a characteristic p analogue of this conjecture.
There is no definition of “geometric” for a Galois representation with positive
characteristic coefficients, but we replace it with the condition trianguline:

Theorem. Assume p > 5, and let L be a finite extension of Fp((w)). Let
p: Galg — GLa(Op) be an odd continuous Galotis representation unramified
away from p such that the (¢,I')-module Diig(plcal,) is trianguline with
reqular parameters. Assume moreover that the reduction p is modular and
satisfies certain additional technical hypotheses. Then p is the twist of the
Galois representation corresponding to a point on the extended eigencurve

ZaL,-

The eigencurve %é}i was originally constructed by Coleman—Mazur, and it

is a rigid analytic space whose points correspond to overconvergent modular

forms. Points corresponding to classical eigenforms (of varying weight and

level) are dense, so we can think of it as a moduli space of p-adic modular
1
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forms. Each point of the eigencurve has a Galois representation attached, but
Kisin [Kis03| showed that the Galois representations at non-classical points
are not geometric at p. Instead, they are trianguline (though he did not use
this terminology; it was introduced subsequently by Colmez). A converse
was proved by Emerton [Emelll Theorem 1.2.4] when the coefficients are
p-adic.

Given a p-adic Galois representation p, there is an associated object Dyig(p)
called a (¢, I')-module; at the expense of making the coefficients more compli-
cated, the Galois representation can be captured as the action of a semi-linear
operator ¢ together with the action of a 1-dimensional p-adic Lie group I'.
Then even if p is irreducible, it is possible for Dyig(p) to be reducible. Kisin
showed that this happens in small neighborhoods of classical points on the
eigencurve; if p, is the Galois representation attached to a point x, there is
an exact sequence

0 = D1 = Dyig(pz) = D2 = 0

where Dy and Dy are rank-1 (¢, I')-modules. There is a basis element e; of
D1 such that ¢ acts on ey by the U,-eigenvalue at  and I' acts on e; trivially.
This construction was extended over (a normalization of) the eigencurve in
separate work of [KPX14] and [Liul5].

The eigencurve is equipped with a map wt : %é}i — W8 to weight space,
which we may view as the disjoint union of p — 1 rigid analytic open unit
disks. The existence of Galois representations attached to eigenforms means
it is also equipped with a morphism %é}i — Gpe x Hﬁ R5, where the R; are
Galois deformation rings (more precisely, deformation rings of pseudochar-
acters), and Gy corresponds to the eigenvalue of the Hecke operator U,.
The triangulation results of [Kis03|, [KPX14], and |[Liul5] mean that we can
combine these two maps to get a morphism

l l h,k,rig
zchGLQ — )(,m75
D

to a moduli space of trianguline Galois representations (here the decorations
1 and k simply mean we are fixing the determinant and the parameters of
the triangulation). The result of [Emell| then shows that this morphism
surjects onto certain components.

More recently, the construction of the eigencurve has been extended to mixed
characteristic by Andreatta—Pilloni-Tovita [AIP18|, [AIP16] and Johansson—
Newton [JN16], using Huber’s theory of adic spaces instead of Tate’s theory
of rigid analytic spaces. These authors construct pseudorigid spaces con-
taining characteristic 0 eigenvarieties as open subspaces, with non-empty
characteristic p loci.

In previous work, we generalized the construction of (¢, I')-module to families
of Galois representations with pseudorigid coefficients [Bel23b] and showed
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that the triangulation of the eigencurve extends to the boundary character-
istic p points [Bel23a]. This yields an analogous morphism Zqr, — [ th’[;{:%
of pseudorigid spaces. In the present paper, we use that machinery to prove
a modularity result for Galois representations trianguline at p, characterizing

the image in many components.

The proof rests on the Taylor—Wiles patching method, as reformulated in [Sch18].
This is the source of the aforementioned technical hypotheses on p (which
amount to assumptions about the image of p being sufficiently big). How-
ever, there are a number of technical complications. For example, to carry
out some preliminary reductions, we first prove a version of the Jacquet—
Langlands correspondence on eigenvarieties extending the construction of [Bir19],
and we characterize the image of the cyclic base change morphism Zqr,, /q —
ZaL, /r of [IN19a]. The latter uses the construction of an auxiliary “Gal(F/Q)-
fixed” eigenvariety, which may be of independent interest. This permits us

to transfer the problem to overconvergent quaternionic modular forms over

a cyclic totally real extension of Q.

The modules of quaternionic automorphic forms we patch are those con-
structed in |[JNI6|. We construct trianguline deformation rings which act
on them, and we patch by introducing ramification at additional primes.
But the construction of trianguline deformation rings is delicate, because in
general triangulations of (p,T')-modules do not interact well with integral
structures on the corresponding Galois representation. Thus, we crucially
use the pseudorigid theory of triangulations (and not just the rigid analytic
theory) to ensure that we can construct an integral quotient of a Galois defor-
mation ring whose analytic points are trianguline, with Frobenius eigenvalues
bounded by a fixed slope.

This leads to a further difficulty, which is that it is difficult to study the
components of the trianguline deformation ring directly. Instead, we patch
families of overconvergent automorphic forms, which lets us compare the Ga-
lois representation we are interested in with “nearby” potentially Barsotti—
Tate representations which are known to be automorphic. Along the way, we
construct local pieces of a patched quaternionic eigenvariety 2775, together
with a morphism to a trianguline variety and a patched module of overcon-
vergent modular forms. We note that it is only possible to patch families of
overconvergent automorphic forms because we constructed an integral model
of the trianguline variety; we know almost nothing about its structure away
from nice points in the analytic locus, but understanding it better would be
very interesting. We also hope to glue these local patched modules in future
work.

We have not attempted to work in maximum generality. In particular, it
should be possible to relax the ramification condition and prove an overcon-
vergent modularity lifting theorem for certain totally real fields. However,
this would require constructing and studying a cyclic base change morphism
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for more general extensions of number fields. We expect that it is possible to
construct these morphisms for the middle-degree eigenvariety over a totally
real field, which would lead to stronger trianguline modularity theorems in
characteristic 0. But we were forced to assume the degree of the cyclic ex-
tension was prime to p to characterize the image of a base change morphism
in positive characteristic, so additional work would be required to strengthen
our results in positive characteristic.

We further remark that our “big image” condition on the residual Galois
representation is stronger than the standard one. This is to ensure that we
have access to the necessary cohomological vanishing theorems, to permit us
to work with middle-degree eigenvarieties.

The work of Breuil-Hellmann-Schraen [BHS17| constructs a similar patched
eigenvariety for unitary groups, using completed cohomology rather than
overconvergent cohomology. It would be extremely interesting to relate these
two constructions.

We now describe the structure of this paper. We begin by recalling the
theory of trianguline (¢, I')-modules and their deformations; this permits us
to construct and study pseudorigid trianguline varieties (generalizing those
of [Chel3| and [BHS17]|). We compute the dimension of these pseudorigid tri-
anguline varieties with fixed determinant and weight, and we show that they
have an integral model after bounding the slopes of the rank-1 constituents.

We then turn to the automorphic theory we will need. We prove that so-
called twist classical points are very Zariski dense in the eigenvariety 275,
which permits us to interpolate the Jacquet-Langlands correspondence to
extended eigenvarieties and permits us to conclude that Zpx is reduced
(extending the results of [Bir19] and [Che05]). We also study the cyclic base
change morphism 2qr, /@ — Zar, /r of [JN19a]; when F' is totally real
and [F': Q] is prime to p, we show that » € 2y, /r is in the image if and
only if it is fixed by Gal(F/Q). To do this, we construct a “Gal(F/Q)-fixed

eigenvariety” and show that classical points are dense in it.

Finally, we turn to the patching argument. We show that our modules
of integral overconvergent automorphic forms are projective, and we show
that we can add certain kinds of level structure. Then using the standard
Taylor—Wiles patching construction, we construct a patched module with
the support we expect. This permits us to deduce the desired modularity
statement, by interpolation from crystalline points in characteristic 0. This
last step requires the results of [Kis09a], which in turn requires the p-adic lo-
cal Langlands correspondence of [Emell]. Thus, while our argument applies
to characteristic 0 Galois representations, it does not replace the trianguline
modularity result of that paper.

Notation. We fix some running notation and hypotheses. In section [2| we
assume that p > 3, because we only developed the theory of (p,I')-modules
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over pseudorigid spaces in that situation. In sections [3] and [5| we assume
p > 5; we need this hypothesis to construct eigenvarieties (and the Jacquet—
Langlands and cyclic base change morphisms between them) at tame level
1, and later to apply Taylor—Wiles patching.

We normalize class field theory so that it sends uniformizers to geometric
Frobenius, and we normalize Hodge—Tate weights so that the cyclotomic
character has Hodge-Tate weight —1.

If X is a group isomorphic to Xy x Z;?T x Z%% where X is a finite group,
we let X := Hom(X, G24) denote the functor R +— Homes(X, R*).

Acknowledgments. I would like to thank A. Caraiani, T. Gee, J. Newton,
and V. Pilloni for many helpful conversations, as well as useful comments
on earlier versions of this paper. I would also like to thank the anonymous
referee for reading this paper extremely carefully and making many helpful
comments.

2. TRIANGULINE VARIETIES AND GALOIS DEFORMATION RINGS

2.1. Galois deformation rings. Let E/Q, be a finite extension, with ring
of integers O, uniformizer wg, and residue field F, and let G be a profinite
group satisfying Mazur’s condition ®,. The two cases we will be most inter-
ested in are G = Galg and G = Galp g, where K is a finite extension of Q,,
and F' is a number field, and S is a set of places of F.

Suppose we have a continuous homomorphism p : G — GLg4(F). Then
we may construct the univeral framed deformation ring R%', which pro-

represents the functor
A~{p:G—GLy(A) | p=p (mod my)}

on the category of complete local noetherian &g-algebras with residue field
F, of lifts of p, that is, deformations of p together with a basis. If Endg(p) =
F (for example, if p is absolutely irreducible), we additionally have the uni-
versal (unframed) deformation ring R; parametrizing deformations of p.

If R is a complete local noetherian &g-algebra with maximal ideal mg and
finite residue field, and v : Galx — R* is a continuous character such that
det7 = ¢ mod mp, there is a quotient R® R% —» RﬁD a4 parametrizing lifts
of p with determinant . Indeed, there is a homomorphism Rget; — R%
given by the determinant map, and the choice of 1 defines a homomorphism
Rget5 — R; then Rpm’w = R®Rdetﬁ R%. If Endg(p) = F, there is similarly
a quotient R ® R; — R%b parametrizing deformations of p with determinant
.

Now we specialize to the arithmetic situations of interest. Let K/Q, be a
finite extension, and assume that Hom(K, F) has cardinality [K : Q). Then
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by [BIP21, Corollary 3.37], RE is a complete intersection, and by [BIP21],
Corollary 4.21] the irreducible components of Spec R%' are in bijection with
the irreducible components of Spec Rqet5. More precisely, if p := o0 (K)
denotes the p-power roots of unity in K *, local class field theory identifies it
with a subgroup of Gal%’; by [BIP21, Lemma 4.1] Rqet 5 is a power series ring
over Oglul, so its irreducible components are in bijection with characters
X ¢ p — 0. There are quotients R% —» RﬁD’X parametrizing lifts of p
whose determinant restricted to p (via the Artin map) agrees with y, and
by [BIP21l, Corollary 4.5, Corollary 4.19] the rings RﬁD X are normal domains
and complete intersections. In particular, R%' is reduced.

Let F' be a number field and let ¥, := {v | p}. If p : Galp — GL4(F) is
a continuous representation and v is a place of F, we let p, denote p\GalFU.
Suppose that p is absolutely irreducible, and let S be a finite set of places
of F' containing 3, and the infinite places such that p is unramified outside
S. Then we let R; g denote the universal deformation ring parametrizing
deformations unramified outside of .S, and we let R%" g denote the universal
deformation ring whose A-points are deformations p4 of p unramified outside

of S, together with bases for PA|Ga1FU for each v € ¥,. We also let RY, =

p,loc *
0
®vezp va .

If ¢ : Galp — R* is a continuous character as above, we let

RVG:=R & Ryg
p,S P
Raet 3,5
Uy . _ 3 0
Rﬁ,s =R ® R@s
Ryet 3,5
Uy 3 |
Rﬁ,loc =R ® Rﬁ,loc
Rdetﬁ,loc

For any place v € X, restriction from Galr g to Galg, defines a homomor-
phism R%] — R%' g» and so we obtain homomorphisms

O O
RE1oc = R5 s

and
O,ep O,
Roloe = T
We can relate our local and global deformation rings more precisely:

Lemma 2.1.1. Suppose that p t d. Let h' denote the dimension (as an
F-vector space) of

ker | H'(Galp,s,ad’(p)) — [ H'(Galg,,ad’(p,))
vEY,
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let§p := dimp HO(GaIF,S, adp), and forv € ¥, let §, := dimp H%(Galg,,adp,).
Then R?”g) can be topologically generated over Rg’ffc by g :=h' +Zv62p 6y —
Op elements.

Proof. Let myo. denote the maximal ideal of R%l ’fé’c and let mg denote the
maximal ideal of R? ;p We need to compute the relative tangent space

(mg / (m%,mloc))* of R% ’g} /M. But the maximal ideal of R is contained in

Moe, SO We may assume that ¢ is constant, and the result follows from [Kis09b!
Lemma 3.2.2]. O

2.2. Deformations of trianguline (¢,I')-modules. Trianguline (p,I")-
modules are those which are extensions of (¢, [')-modules of character type.
More precisely,

Definition 2.2.1. Let X be a pseudorigid space over Of for some finite
extension E/Q,, let K/Q, be a finite extension, and let § = (d1,...,dq) :
(K*)? — T(X, 0%) be a d-tuple of continuous characters. A (p, 'k )-module
D is trianguline with parameter § if (possibly after enlarging E) there is an
increasing filtration Fil®* D by (¢, 'k )-modules and a set of line bundles
A, ..., 2Ly such that gr' D = Ax rig k (0;) ® Z; for all i.

If X = Spa R where R is a field, we say that D is strictly trianguline with
parameter ¢ if for each i, Fil“™! D is the unique sub-(p, T )-module of D
containing Fil’ D such that gr't! D = AR rig. i (0i41).

As in the characteristic 0 situation treated in [BCQ09, §2.3|, we may define
and study deformations of trianguline (¢, I')-modules:

Definition 2.2.2. Let R be a finite extension of F,((u)) and let D be a fixed
(¢, I'k)-module of rank d over Ag vig k equipped with a triangulation Fil® D
with parameter . Let Cr denote the category of artin local Z,-algebras R’
equipped with an isomorphism R’'/mpr — R. The trianguline deformation
functor Defp pje : Cr — Set is defined to be the set of isomorphism classes

Defp ppe (R') := {(Dp/, Fil* Dg/, 1)}/ ~
where Dpgs is a (¢,'x)-module over Aps g i, Fil* Dr/ is a triangulation,

and ¢ : R®p Dy 1>‘D is an isomorphism which also defines isomorphisms
R®p Fil' Dy = Fil' D.

One of the consequences of the proof of [Bel23b, Proposition 5.1] is that when
d = 1, Defp pje is formally smooth. As in the characteristic 0 situation,
the same is true for general d, so long as the parameter satisfies a certain
regularity condition. Note that the regularity condition in here is slightly
different than in characteristic 0; the additional characters avoided in the
statement of [BC09, Proposition 2.3.10] do not make sense in characteristic

p.
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Proposition 2.2.3. Suppose the parameter § of Fil® D satisfies the property
that 51'5;1 # XeyeoNmy /q, for anyi < j. Then Defp pye is formally smooth.

Proof. The proof is essentially identical to that of [BC09, Proposition 2.3.10],
but we sketch it here for the convenience of the reader. We proceed by
induction on d; the case d = 1 follows from the proof of [Bel23b, Proposition
5.1], so we assume the result for trianguline deformations of (¢, I')-modules
of rank d — 1. Let I C R’ be a square-zero ideal. We need to prove that
Defp pige (R') — Defp pye (R'/T) is surjective, so we may factor R — R'/I
into a series of small extensions and assume that [ is principal and Img = 0.
By the inductive hypothesis, we may find a trianguline deformation D’ of
Fil“~! D over AR vig,1.- By twisting, we may assume that 4 is trivial. Then
we need to show that the natural map H;I(D’) — H;’F(Fild_l) is surjective.
But the cokernel of this map is H?DI(I QR /m gy Fild-1 D(éd_l)) =1 @R/ /mp,
HiF(Fild*l D(5Jl)), which is 0 by assumption and [Bel23b, Corollary 4.11].

O

In order to build moduli spaces of trianguline (¢, ')-modules, we will use
moduli spaces of characters, as in [Bel23a), §2.3]. If G is a commutative p-
adic Lie group and G’ C G is a compact subgroup such that G/G’ is free and
finitely generated, then we have G = Spa Z,[G'] and the pseudorigid spaces
G and Gan = Spa(Z|G/G',Z) xg GV I Xisa pseudorigid space, we

A~

also have the pseudorigid space G x, which represents the functor
Y ~» Homs(G, O(Y))
on the category of adic spaces over X.

In particular, if K is a finite extension of Q,,, we will be interested in KX
—— an
and (K*)4 ford > 1:

Definition 2.2.4. We let T := I/(?an, and for any d > 1, we write T¢ :=

_————_an

(K

We see that KX = GadxzSpaZ,[0F]™, and T4 = G2y 4 Spa Z,[(0F)Y™.
Since O is compact, SpaZ,[0]*" is a quasi-compact pseudorigid space;

it has a finite cover {U; := Spa R;} by affinoid subspaces, and G, y, is a
rising union of relative annuli Cy, 5, := Spa R; <uhT, uhT_1>.

——an
If K = Qp, then Q) has connected components indexed by the elements

of py—1, each of which is isomorphic to (SpaZ,[Z,])™ x Gd.

Remark 2.2.5. In the pseudorigid setting (unlike the classical rigid an-
—_— an —an —an

alytic setting), it is not true that G; x Gy = Gla X Gga . Indeed,

SpaZ,[T1,T2]*" consists of all valuations which do not vanish on all three
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of p, T, T>. But

Spa Zp [[Tl]]an X Z, Spa Zp [[Tg]]an
also excludes valuations vanishing at both p and 73 (or both p and 7T5). In
particular, 7% is not a product of copies of T

Definition 2.2.6. We say that a continuous character x : K* — 0(X)* is
reqular if for all maximal points € X, the residual character k., : K* —
E(x)* is not of the form

i i . _ ryHom(K k e L
e a—atorar— attalforie Z>8m( k() (if z is a characteristic

0 point), or
e trivial or Xcyec © Nmg/q, (if z is a characteristic p point).

The space of regular parameters 7;‘§g C T¢ is the Zariski-open subspace
whose X-points are given by parameters § : (K*)? — €(X)* such that
5¢5;1 : KX — O0(X)™ is regular for all j > i.

Consider the functor SdD on pseudorigid spaces defined via

X ~{(D,Fil*D,§,v)}/ ~
where D is a trianguline (¢, 'k )-module with filtration Fil®* D and regular
parameter § € ’Egg, and v is a sequence of trivializations v; : gr'D =
Ax rig,ic- There is a natural transformation 55' — ﬁgg given on X-points by
(D,Fil* D,8,v) ~ §

Exactly as in [Chel3| Théoréme 3.3| and [HS16, Theorem 2.4|, we have the
following:

Proposition 2.2.7. The functor SE is representable by a pseudorigid space,
which we also denote SdD, and the morphism SdD — T4 is smooth of relative

reg
dimension d(d2—1) (K Q).

One proves by induction on d that if D is a trianguline (¢, Ik )-module
over X with parameter § € (Treg)?, then H;?FK (D) is a vector bundle over

X of rank d[K : Q] (the regularity assumption ensures that Hg’FK (D) =

Hf:,FK (D) =0). Now S =T = ’Eég, so ST is representable and is smooth
of the correct dimension over 7;16g. Then one may proceed by induction on

d again, and construct SE as the moduli space of extensions of the univer-
sal (¢,'k)-module of character type A7 rig k (duniv) by the universal object
Dg_1,univ over SdD_l. For a specified regular parameter § = (61,...,04) €
ﬁgg(X), the fiber Sdm‘é is equal to Eth(ijrig’K((sd), Dd—l,univ‘(él,...,éd,l)) =
H‘}O’FK (Dd—l,univ|(61,.4.,(5d,1)(5;1))- This is a rank-(d — 1) vector bundle over
X, and the claim follows.

We also introduce variants of SE with families of fixed determinant and
weights. More precisely, suppose X is a pseudorigid space and we have
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a continuous character dger : K* — O(X)* and a d-tuple of continuous
characters k := (ki,...,Kq) : O — O(X)*. We say that dqey and k are
compatible if 5det|ﬁ}x< = K1 -Kq. If dqet and k are compatible, we consider

the functors 85’6‘1‘” and SdD’(Sde“ﬁ on pseudorigid spaces over X defined via
Y ~ {(D,Fil* D,§) € SP(Y) | 6104 = bqer}/ ~
and

Y ~ {(D,Fil* D,§,v) € SF(Y) | 0il g = ki for all i, 81+ - 0g = daer}/ ~

Proposition 2.2.8. The functor S(?’éde“ﬁ 1s representable by a pseudorigid
space over X, which we also denote S(?’éde“ﬁ, and the morphism SdD’(sdet’ﬁ —
X s smooth and surjective of relative dimension d(d2—1) (K :Qp+d—1.

———an
Proof. Set Y := (05%)% . Then there is a morphism 7¢ — Gy, given
by § — (51|ﬁlx<, e ,5d|ﬁlx<,61(wK) : ~<5d(wK)>, and it is smooth of relative
dimension d — 1. The choice of d4et and & define a morphism X — Gy, v,
and we have a pullback square

O
Sd ,0det SdEI

| |

X — Gpy
Then the result follows from Proposition [2.2. ([

Example 2.2.9. In the example of most interest to us, we will take K = Q,,
d = 2, and R = Z,[Tp], where Ty := T(Z,) for a split maximal torus
T C GL3 /Z,. Fix an unramified character ¢ : Galg, — R*. There is a uni-
versal pair of characters A1, A2 : Z) = R, and we set 1 := (Al)\gxcyc)_l o
and k : (/\2_1, (Alxcyc)_l). Then the morphism SQD — Spa R®" is the natural

projection SE — (Zy)?, composed with taking inverses and swapping fac-
tors. Furthermore, 7 is 2-dimensional and irreducible (corresponding to a
choice of 01); fixing the determinant means the remaining degrees of freedom

—

are the 1-dimensional irreducible space Z, (corresponding to the choice of
(52|Z; ), and the generically 1-dimensional space of extensions between them.

. . 0,60,k . . .
We see that in this case, S, ¥ is 4-dimensional, and an Al-torsor over a

—

dense open subspace of G¥ x (Z,)2. Hence it is irreducible.

2.3. Structure of trianguline varieties. Let K/Q, be a finite extension,
and let p : Galg — GLg4(k) be a continuous representation, where k is a finite
field containing the residue field of K. The fiber product (Spa Rﬁm)an X SpaZ,
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T4 exists as a pseudorigid space, and it is contained in the fiber product

—

Gl %z (0F)4 x Spa(R7 )™

(with complement of codimension > 2 if d > 2). Let XtErliﬁ be the Zariski
closure in the latter of the set of maximal points = {(p,9,)}, where p, is
a (framed) lift of p and 0, € ﬁgg(L) is a regular parameter of Drig(py).

Let R be a complete local noetherian Z,-algebra with finite residue field.
Fix an d-tuple of characters & := (K1, ..., Kq), where k; : O — O(X)* and
X := (Spa R)™, and fix a character ¢ : Galg — R*. Over the pseudorigid
space X, a character ¢ : Galg — O(X)* corresponds to a rank-1 (¢, T')-
module of the form Diig(dy), for some character oy : K* — O(X)*. If 0y
and k are compatible, we may define

XE{?%E C G?,E}’d Xz (OF)* x (Spa Rg’w)an
to be the Zariski closure of the set of maximal points x = {(pg,d,)}, where
pe is a framed lift of p with determinant ¢ and §, € T,%,(L) is a regular
parameter of Diig(ps) such that d;] ox = Fi

In order to study the structure of XEriﬁ and XtDri’j%’ﬁ, we will need to know
something about the essential image of the functor from Galois represen-
tations to (¢, I')-modules. We refer the reader to [Bel23b] for details on
definitions of pseudorigid overconvergent period rings and the construction
of (¢,I')-modules in the pseudorigid setting. However, we note here that
AR 0,5,k is the coordinate ring of a closed annulus over Spa R, Ag (o), x is
the ring of global functions on a half-open annulus over Spa R, and AR rig x =
fm,  Apop,x- Asin the work of [CCI8| and [BCOY|, (¢,T')-modules at-
tached to Galois representations are constructed over Ag [o 3], i for some b > 0
(which depends in subtle ways on the representation).

Lemma 2.3.1. The functor M ~ Dyig (M) from Galg -representations to
their associated (¢, T')-modules is formally smooth.

Proof. We need to show that if D is a projective (¢, 'k )-module over a pseu-
doaffinoid algebra R’, and I C R’ is a square-zero ideal such that (R'/I)® g D
arises from a family of Galois representations, then D also arises from a fam-
ily of Galois representations. Indeed, we have a short exact sequence

0—ID—D— (R/I)®r D —0

By assumption, D’ := (R'/I) ® g D arises from a family of Galg represen-
tations M’ over R'/I, and since

D":=ID=I1®p D= (R'/amp I) ®p ;1 D
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it arises from a family of Galy representations M” over R'/anng/ I. Since
D has a model Dy, over Ags (op),x, We have a commutative diagram

0—— KR’,(O,b/p} Rpr D' — KR’,(O,b/p] RQr D —— [N\R/,(O’b/p] KRpr D ——0

o-1] o1 o1

0—— KR’,(O,b] QR D' KR/,(O,b] QR D — KR’,(O,b] QR D — 0

By construction, KR’,(O,b]‘X’R’D” = A/N\R/’(O,b]@) (/NXR&[O’b] SRy Mé’) and /N\R’,(o,b}@’R’
D =~ KR’,(O,b] ® (/N\R67[0,b] Ry Mé), for some integral models M/ and M

(perhaps after localizing on Spa R’ and shrinking b). Therefore, we have
quasi-isomorphisms

~

[M"] = [Ag oy ®py My =, AR o/ ®py My
= [KR’,(O,I;] o D" £ KR’,(O,b/p] @ D]
and
[M'] = [I\R/,[O,b] ® gy, My R KR',[o,b/p] ®py, Mg
= [Apr o4 @r D’ S Api(0p/p @ D]

Then the snake lemma implies that we have an exact sequence
" A p=1 ’
0> M"— (AR/7r1g7K®D) - M =0

of R'-modules equipped with continuous R’-linear actions of Galx, with M’

finite projective over R'/I and M" = (R'/annp I) ®pj; M'. Tt follows that
~ p=1

M = <AR/,rig7 K® D) is a projective R’-module of the same rank and

Dyig k(M) = D. ]

In [BHSIT7, §2.2|, the authors show that the characteristic 0 locus thjri’r%g of
the trianguline variety is equidimensional of dimension d? + [K : Q] d(d; 1),

and generically smooth. We note that if ¢ : Galg — 0}, is a crystalline
character, where £//Q,, is a finite extension and O’ is its ring of integers, then

an identical argument shows that the rigid analytic locus XtDri’%rig C ng%
is equidimensional of dimension d? — 1+ [K : Qp]% (indeed, [BIP22,
Theorem 1.2] provides the necessary crystalline lifts with fixed determinant).

Unfortunately, we cannot rule out components of XtEr’i,p or XErli’,p supported
entirely in characteristic p, and so to deduce the same result in the pseudo-
rigid setting, we need to repeat a large part of the argument in a neighbor-

hood of the characteristic p fiber.
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Proposition 2.3.2. (1) The space me

reduced structure) is equidimensional of dimension d*+[K : Qp]

(equipped with its underlying
d+1

(2) If Xgllﬁ’* is non-empty, it is equidimensional of dimension d* — 1 +

K : QP}M + dim Spa R®".

(3) There is an open subspace Z C Spa R*™ such that morphism X
d(d—1)
5

#’ﬁ’
ri,p

7 is equidimensional of dimension d*> — 1 + [K : Qp]

Proof. The proofs of the first two parts are very similar to that of [BHSIT,
Théoréme 2.6], and we will prove them simultaneously. By construction,
there is a universal framed deformation pyniv : Galg — GLd(RﬁD) of p, and

we may pull it back to X~ e (resp. Xgllﬁ”

affinoid X € X — XtDrlp (resp. Xglﬁﬁ) by [Bel23a, Corollary 5.10] there is

a sequence of blow-ups and normalizations f : X — X and an open subspace
UcX containing the characteristic p locus such that f*puniv|y is triangu-
line with parameters f*§. Shrinking U if necessary, we may assume that f*§
is regular (indeed, the pre-image of ﬁgg in U is open, and by construction
U contains a Zariski dense set of points corresponding to trianguline repre-
sentations with regular parameters). Furthermore, there is a Zariski-dense

and open subspace V' C Xtan (resp. th’lf)”) such that f~1(V) C U and f

). Then for any irreducible open

defines an isomorphism f~1(V) = V.

Over U, the (¢,I'x)-module D := Diig i (f*puniv) is equipped with an in-
creasing filtration Fil®* D such that gr' D = Ay gk (f*0;) ® £ for some line
bundle .%; on U. We may therefore construct a G%’U—torsor UP = U trivi-
alizing each of the .%; since UY carries the data (D, Fil®* D, f*4,v), where v
is the set of trivializations v; : gr* D = AU rig, k (f*0;), there is a morphism
U- — S5

Let V2 ¢ U™ denote the pullback of UY — U to V. We claim that V2 —
SdD is smooth of relative dimension d?. To see this, suppose we have a
pseudoaffinoid algebra R/, a morphism Spa R’ — Scllj, and a square-zero
ideal I C R’ such that the composition SpaR'/I < SpaR' — S7 is in
the image of V=. Then there is a ring of definition R C R’/I such that
the homomorphism R — R'/I factors through Rp; we let M = R be
the pullback of the universal framed deformation to R, and we let M’ :=
R/I® R} M.

By Lemma[2.3.1] there is a Galg-representation M over R’ such that (R'/I)®p
M = M. Tt follows that M} and its basis lift to a free module My over
some ring of definition R C R', such that R' ®g, Mo = M. Moreover, M’
is residually a lift of p at every maximal point of Spa R’, so M is as well.
By [WE1S, Theorem 3.8, M corresponds to a Spa R, point of Spf R%, and

by construction M corresponds to a Spa R’-point of X deforming M’.

tr1 P
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Since M’ corresponds to a Spa(R'/I)-point of the Zariski-open subspace
V C XtDriﬁ, the image of the morphism Spa R — XtDri,ﬁ also lands in V.
Since D is trianguline with regular parameters and trivialized quotients, the

morphism Spa R’ — V lifts to a morphism Spa R’ — V.

The claim that V5 — SdD has relative dimension d? follows because “changing
the framing” makes V= a (GL,)*-torsor over its image in S5

Now we can compute the dimension. By Proposition we see that VH
is equidimensional of dimension d? + d(dT_l)[K : Qpl + d[K : Qp] + d (resp.

dQ—I—d(dT_l)[K : Q] +d[K : Qp)+d+dim Spa R*"). Since VE — Visa ng,V‘

torsor, it follows that V is equidimensional of dimension d? + @[K 1 Qyl

(resp. d? + @[K 1 Qp) +d[K : Qp] + dimSpa R*. Finally, V C X is
Zariski-dense, so we are done.

For the last part, we define VE¥£ via the pullback

vBye 0

| !

D76 ’.
S ——

l |

Spa R ——— Gm’y

—

where Y := (0})? and the morphism Spa R*® — G,y is given by £ and
dy. Since vH & G,y is smooth, its image is open, and the pre-image in
Spa R®" is open, as well. O

Remark 2.3.3. Suppose that © € Spa R*" is a maximal point such that the
fiber of X,Ei’j%’ﬁ contains a point (py,d,) such that d,, is a regular parameter
for Dyig(py). Then if we apply Proposition with R = k(x)", we see that
every irreducible component of the fiber containing (p,,d,) has dimension

@+ WD Q) +d[K Q) :

Example 2.3.4. We return to the setting of Example where K = Q,,
d =2, R = Z,[1}] corresponds to integral weight space for a split maximal
torus of GLz /Zy, 1o : Galg, — R* is an unramified character, and there
is a universal pair of characters A1, A2 : Z; = R*. We again set ¢ :=
_ _ _ o 0 .

o (M A2Xeye) L and £ (A 1, (A1 Xeye) 1). Then if Xtri’jfp’ﬁ is non-empty,
each irreducible component is 6-dimensional.

d,) with specified

weight and determinant, such that p, is trianguline with regular parameter
d,. Then the fiber over Q$|(Z;)2 is 4-dimensional; since this is one of p — 1

Moreover, suppose there is a characteristic-p point (pg,d
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disjoint characteristic-p fibers, we see that the irreducible component con-
taining (pz,d,) contains a dense open characteristic-0 subspace, consisting
of points in UZ:(5)™8 (in the notation of [BHSI7, Définition 2.4]).

tri

Now we consider a global setup. Let F' be a number field, and suppose that
7 : Galp — GL4(F) is an absolutely irreducible representation, unramified
outside a finite set of primes S.

Then the homomorphisms
O O
G — By g

for each v | p induce a morphism
(Spa R%!S)an X HTd — H ((Spa Rﬁmv)an X Td)
vlp vlp

and we define XU

trip,s to be the pre-image of [, XtDri,ﬁv'

If R is a complete local noetherian Z,-algebra with maximal ideal mg and
finite residue field, and ¢ : Galp — R* is a continuous character such that
det p = ¢ mod mp, the homomorphisms

and

induce a sequence of morphisms

p,loc

(SpaR%g)an * Lo T — (SpaRE'vw >an * oy Td [T, <(SpaR‘%¢v)an X Td)

where ¢, = @b[Gava. We define X% o and X=¥ . to be the pre-images

tri,p,S tri,p,loc
O s O\ *" d Oy \*" d
of [T, Xz, in (SpaR@S> x [, 7 and (Spa}%yloc) X Ly, T, re-
spectively.
If we additionally have d-tuples of characters &, := (Ky1,...,Kvd), Where

an
)

Ko Op — O(X)* is a continuous character, and we set X := (SpaR)
we may form the spaces

04,6 O,9,5 (RN
Xtri,T),S tri,p,loc Hv [p “*tri,p, !
N N N

(Spa Rg’;’)an < ILypp T (Spa R%iyn I T L, <<Spa R%U’w>an X Td>
In particular, suppose we have fixed a neat level K = KPI, as in sections
and {4 and consider the ring R = Z,[Ty/Z(K)] corresponding to integral
weight space. Since Ty = [,,(Resgy, sz, Tv)(Zp), we have homomorphisms
Z,[T,(OF,)] — R, and hence morphisms Spa R — Spa Z,[T,(COF,)]. Sup-
pose we have a determinant character ¢ : Galp — R* and a set of weights
Ky = (Kulyeeoskua) @ Op — O(Wr)* for each v | p, such that ¥|gal,
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and K, are compatible for all v, and such that v, and &, factor through
Z,[T,(OF,)] — R for all v, ie., they depend only on the projection to
$pa Zy[Tu(0r, )]

Proposition 2.3.5. Under the above assumptions, there is an open subspace
7 C W such that X_22% |, — Z is equidimensional of dimension |3, |(d*—

tri,p,loc

1)+ [F: Q4LL,

Proof. Viewing v, as a character Galp, — Z,[T,(OF,)]* and viewing k, =
(o155 Ku,a) as a d-tuple of characters O — Zy[T,(OF,)]*, we have a
pullback diagram

mRY U,tho e
.7777 T UV
tri,p,loc Hv\p Xtrl,pu

| |

Wr —— [l (Spa Zy[T,(OF,)])™

The right vertical morphism has relative dimension

d(d—1 d(d—1
> <d2 —1+[Fy: Qp](2)> = [Spl(d® = 1) +[F: Q](2)
vlp
over an open subspace of [, (Spa Z,[T,(0F,)])™, so the morphism XtDri’%lﬁoc

Wi does, as well.

The case we will be most interested in is the case where F'/Q is cyclic and
totally split at p, and d = 2. In that case, XtDri’j%’;@“ — SpaZ,[T,(OF,) ™
has relative dimension 4 over an open subspace of SpaZ,[T,(OF,)]*" for
each v | p, and hence XtDri’%lﬁoc
an open subspace of #.

— WF has relative dimension 4[F : Q] over

2.4. Trianguline deformation rings. We have constructed the trianguline

varieties XtDri,ﬁ and XE{%’E as subspaces of the (non-quasicompact) pseudo-
—_ an

rigid space Gaddy, (OF)tx (Spa R%') . However, the advantage of working

with general pseudorigid spaces is that we can construct integral models, so

long as we bound the slope.

We will apply this to find formal models for pieces of our trianguline vari-
eties. Recall that when K is a finite extension of Q, and p is a representa-

tion of Galg, we defined XtDrip and XtDri’l%ﬁ as analytic subspaces of G2 x
an

SpaZ,[(0)%] x (SpaR%)an and G x Spa Z,[(0)?] x (SpaR@R%) ,
respectively. By construction, Spa Z,[(05)4] x (Spa R%)an has an integral

an

model, but G x Spa Z,[(0;)7] x (Spa RﬁD) X (Spa R'ﬁ])an does not; in



MODULARITY OF TRIANGULINE GALOIS REPRESENTATIONS 17
particular, it is not equal to the analytic locus of Spa R%' R Zp[[(ﬁ;()d]] <T, T_1>
N an
(and similarly for G2 x Spa Z,[(67)%] x (spaR® Rg) ).

In order to construct integral models of annuli, we begin with an illustrative
example.

Example 2.4.1. Suppose R = Zy[u] and h is an integer. We may cover

Spa(Z,[u]*™ with the open affinoid subspaces U; := Spa (Qp <%>) and
U := Spa (Zp[u] (2) [1]); their intersection is the circle UjNU; = Spa (Qp <%, §>>
The annulus Cy, p, is affinoid, with coordinate ring

u U
Qp <paphT, T2> /(TTy —p") = Q, <p7T, T17T2> /(Ty = p"T, TT, — p")
Restricting to Uy N Us, we obtain an affinoid with coordinate ring

n (5 2 ] - () nm o 2

h h
Writing 77 := <%) Ty and T := (%) Ty, we get

u p ! 1 / h / h
Z —, =, 1,17, T — T —u'T, TT, —
p[[u]]<p7u7 y -1 2> |:u:| /( 1 U ) 2 U )

which is also the restriction of Cy, 5, to Ur N Us.

Thus, we see that Cy;, in this case is

a
Spa (zp[[u]] (T, Ty, Ty, T}, T3) / <phT1’ — WMy, pITY — Ty, Ty — T TN T — PP, T — T, T — uh>>
which has an integral model.

Returning to the general case, we may choose a Z,-basis for the torsion-
free part of € and corresponding coordinates on Spa Z,[0]*". Then we

may consider relative annuli over SpaZ,[0;]; as above, these annuli glue

to a space T, cut out of SpaZ,[O%] (T,{T1,,T>,})*", which has an integral
model ¥},. Similarly, given some integer d > 1, we may define relative annuli
T2 € T4 over SpaZ,[(0;5)?]*", which have integral models T¢.

Now we may set
O ) O O AN
Xtri,ﬁ,gh = Xtri,p N ( Spa Rp x Ty
and

O . xOe S p0 A%
X, = XJ0E0 (Spa R® Y x T
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When F' is a totally real field and p is a representation of Galp unramified
outside a finite set of places .S, we may similarly define bounded global trian-

an
guline varieties XtDri@ s.<pand X 517%% <p, 8s subspaces of <Spa R%' X Hv‘ » 7;ld>
~ an
and (Spa R® R%' X Hv‘p ’771d> , respectively.

We emphasize that these bounded trianguline varieties are not canonical;
they depend on a choice of coordinates on Spa Z,[&]*".

Now we restrict to the case K = Q,, and we choose coordinates 21, ..., 24

on each component of Spa Z,[(ZX)?]*™. Write h = a/b, where a,b are non-
negative relatively prime integers. We will construct an integral model of

XtDri,@gh using Corollary

For z € {p,z1,...,24}, we get an affinoid U, := SpaR,, where R, :=
Z,[(Z; )4 (B, 2, ..., 2 [1] with ring of integers R. g, inside Spa Zp[[(Z;)d]]an,

Then the restriction of ’7;Ld to U, has the presentation

P = <d +b arpb\ |1
SpaZ zxd<7,f,...,f, ap#b e > -
pa p[[( p) ]] 2 s > Z 4y Z 4y ~
Over this space, there is a d-tuple d1,...,d4 : Q; = R where 6;(p) = T;
and (6i|Z§) is the restriction of the universal character on (Z;)d.

Given an affinoid Spa R C (Spa R%‘)an with pseudouniformizer v € R, there
is a (¢,I')-module Dg of rank d over SpaR. To study the bounded tri-
anguline variety, we first study morphisms Dr — ARg;ig,q,(0q). Equiva-
lently, we consider the twist Dg(J;") over the (non-quasi-compact) space
SpaR x SpaR, <thiﬂ> and consider morphisms DR((SJI) — ARyrig,Q, tO
the trivial rank-1 (¢, I')-module.

We wish to first consider the closure Zp of
ZR = {(pz,04,4) | there is a surjective map Diig(pz) — A,{(x)wig,qp((Sd’x)}

in Spa Ro ® R.0 (2T}, T]) /(T}T] — 2%).

There is a non-zero morphism at precisely the points z € Spa R X Spa R,
where H°(DY,(84)) is non-vanishing; equivalently (by Tate duality), at pre-
cisely the points where H?(Dpg(6; " Xeyc)z) is non-vanishing.

By [Bel23al Proposition 5.2| (more precisely, by the proof of the correspond-
ing result [KPX14, Proposition 3.3] in characteristic 0), H%(Dg(5;  Xeye))
vanishes if Ty is sufficiently u-adically small and H?(DY,(4Xcyc)) vanishes
it T, ! is sufficiently u-adically small. Here “sufficiently small” depends only
on Dpg, not on the twist by 5d|z§' The first H? tells us about the existence
of non-zero maps Dr — ARig,q,(d4), and the second tells us about the
existence of non-zero maps AR,rngP(é;l) — DVR (and these are the same
condition at maximal points of Spa R).
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Hence we may view Zp as a Zariski-closed subspace of
{T =Ty} C Spa R (u¥T+') x SpaR. (2T
for some N > 0.

Now we may apply [Bel23a, Corollary 5.3] to the universal twist of Dg
over Spa R <uN Tjﬁl>, and we conclude that Z}, is contained in the subspace
{|2Y| < |ul} for N > 0. Since Zr C Z}, the same is true of Zg and its
Zariski closure Zp.

This lets us study the points consisting of a Galois representation together
with a first step in a triangulation and their Zariski-closure; in order to pro-
ceed by induction and study the points consisting of Galois representations
together with a full triangulation, we will need the following lemma:

Lemma 2.4.2. Let R be a pseudoaffinoid algebra with pseudouniformizer
u € R, and let D be a family of (p,I')-modules of rank d over R such
that HY(k(z) @ DV) is non-zero at a Zariski-dense set of mazimal points
x € Spa R. Then there is a finite affinoid cover {U;} of Spa R and a collection

of proper morphisms m; : Uy = U; such that

(1) There are morphisms \; : m D — Ay rig. Q ®.Z, for some line bundle
'z 1P

g on ﬁl
(2) The kernel of \; is a family of (p,T')-modules of rank d — 1

Proof. After replacing Spa R with a connected component of its normaliza-
tion, we may assume that Spa R is normal and irreducible. Using [KPX14]
Corollary 6.3.6(2)], there is a proper birational morphism f : Xp — Spa R
such that H'(f*DV) is flat for i = 0 and has Tor-dimension at most 1 for
i =1,2. For any x € X, we have an exact sequence

0= ky @ H° (f*DY) — HO (ky ® f*D}) — Tor{* (H'(f*DV), k;) — 0

(where we have used the low-degree exact sequences coming from the base-
change spectral sequence cf. [Bel23a, Corollary 3.12| and the assumption
that H'(f*D") has Tor-dimension at most 1 for i = 1,2). Since we assumed
that HO(k(x) ®g DV) is non-zero at a Zariski-dense set of maximal points
x € Spa R, we see that HY(f*DV) is projective of non-zero rank.

Let g : Y — Xg be the projective space Proj (Sym Ho(f*DV)v) over Xp.
Since g : Yg — Xpg is flat, we have g* H'(f*D) = H'(g* f*D) for all 4, and
moreover, g*f*D retains the property that H%(g*f*D) is flat (of non-zero
rank) and H'(g* f*D) has Tor-dimension at most 1 for i = 1, 2.

Over Yg, there is a universal quotient g*HY(f*DY)V — Oy, (1), which in-
duces an injection Oy, (—1) — g*HO(f*D") with projective cokernel. If we
consider the composition

AYR,rig,Qp (9 ﬁyR(—l) — AYR,rig,Qp ® g*HO(f*DV) — g*f*D\/
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we may again dualize to obtain a morphism X : g* f*D — Oy, (1)®Ayy, rig,q, -

There is a finite affinoid cover {Spa R} of Y trivializing Oy, (1); we let \;
denote the restriction of A to Spa R}. For any = € Spa R;, we again have an
exact sequence

0 — ky®@H® (g* f* DY) — H° (ky ® g* f*DY;) — Tor{* (H(g* f* DY), kz) — 0
This implies in particular that the specialization of A; is non-zero. If x
has characteristic-p residue field, this implies that the specialization of A; is
surjective. As in the proof of [Bel23a, Lemma 5.7|, this implies that there

is an affinoid subdomain V; = {|p| < |u"/|} C Spa R} containing the locus
{p = 0} over which )\; is surjective.

Let N := max{r;} and set U; := {|p| < [«"|} C Spa R. Then the pre-image
(fog)~t(Uy) is contained in U;V;. We will set Uy := (f o g)~! (Uy). Then
by construction, m; : Uy — U is surjective, and

/\‘(71 : WTD — WfﬁYR(D‘Ul

is surjective, so its kernel is a family of (¢, ')-modules of rank d — 1.

On the other hand, set Us := {|u”| < |p|} C SpaR. Then the pre-image
(f 0 9)~1 (Us) is quasi-compact and contained in the characteristic-0 locus
of Yr, so we may apply the techniques of the proof of [KPX14, Theorem
6.3.9]. More precisely, we let h: Uy — (f o g)~! (Uz) be a proper birational
morphism so that H*((fogoh)*D/t) is flat for i = 0 and has Tor-dimension
at most 1 for i = 1,2 (again using [KPX14l Corollary 6.3.6(2)]). This lets us
deduce that h*)\|Ué is surjective away from a proper Zariski-closed subspace,
and locally on Uj, its cokernel is killed by a power of t. Then we make a

further blow-up 172 — U} such that over Us, the kernel of A is a family of
(¢, T')-modules of rank d — 1, as desired. O

This permits us to use induction to deduce the following:

Corollary 2.4.3. Let R be a pseudoaffinoid algebra with pseudouniformizer
u € R, and let D be a family of rank-d (,T")-modules over R. Consider
the Zariski closure Z of the locus in Gy, r X Spa R, o corresponding to points

x = (Dy,3,) where |5; - (p)*| < |27 for all i, and 8, is a regular parameter
of D,. Then there are some N, N' > 0 such that

Z C{|2N] < |ul for alli} C SpaR<uN/TZ-i1> x Spa R, o

This is precisely the condition we need to apply Corollary so the
closure we are interested in is well-behaved in Spf Ry <uN /Tiﬂ ® R. o, and

hence in the localization

{1/ =T} < Spf Ry (u'TA1) & Repg (217", 17) (11T — %)
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Letting z range over {p,z1,..., 24}, we may glue to get a closed subspace
an
of Spf Ry x ‘Iz. Letting Spa R range over a (finite) cover of (Spa R%) , in

turn, it follows that we may construct integral models of pieces of trianguline
varieties:

Corollary 2.4.4. Suppose that p is a representation of Galg, where K is a
finite extension of Qy, or of Galp, where F is a totally real number field (in
which case we assume p is unmmiﬁed outside a ﬁm’te set of places S) Then
there are affine formal schemes xmp <, = Spf Rmp <, (resp. %m 5.8,< <h

U,k U,k
Spf Rtrl,p,S’,gh) and xtrl 0,<h (Tesp '}:trl 055, <h) such that <%tr1 D, <h)
an an
O O _ yO U,k _ yUvk
Xtri,ﬁ,gh (resp. (xtri,ﬁ s <h) = Xtri,ﬁ,s,gh) and <3€tri,ﬁ,§h> = Xtri,p,gh

Oy ™ _ xOts
(Tesp' (%tri,ﬁ,S,gh) trl,p S, <h)
3. EXTENDED EIGENVARIETIES

3.1. Definitions. We briefly recall the construction of extended eigenvari-
eties in the two cases of interest to us. Fix a number field F' and a re-
ductive group H over F' which is split at all places above p; then we define
G := Resp/q H. If we choose split models Hg,, over OF, for each place v | p,
along with split maximal tori and Borel subgroups T, C B, C Hg,, , we ob-
tain an integral model Gz, = Hv‘p Hgp, of G, as well as closed subgroup
schemes
T:= HReSﬁFv/Zp T, CB:= HRGS@"FU/ZP B,
vlp vlp

Let Ty := T(Z,), and let the Iwahori subgroup I C Ggz,(Z;) be the pre-
image of B(F)) under the reduction map Gz,(Z,) — Gz, (F,).

We choose a tame level by choosing compact open subgroups K; C G(Qy)
for each prime ¢ # p, such that Ky, = G(Z,) for almost all primes ¢ (where
G is some reductive model of G over Z[1/M] for some integer M). Then we
put K?P .= Hﬁ#p Ky and K := KPI; we assume throughout that K contains

an open normal subgroup K’ such that [K : K'] is prime to p and
(3.1.1) e 'D*zNK c 0% forallx € (Aps @p D)™

which is the neatness hypothesis of [JNlQb]H If Z denotes the center of G,
we let Z(K) := Z(Q) N K and let Z(K) C Ty denote its p-adic closure.
We also let Ko, C G(R) be a maximal compact and connected subgroup at
infinity, and let Z3, C Zo, =: Z(R) denote the identity component.

1The authors assume throughout that the level is neat; to relax this assumption, one
chooses an open normal subgroup K’ C K of index prime to p such that K’ is neat,
and considers the complexes C¢ (K, —)%/5" and CPM(K', =) g/x. Since K/K’ has order

prime to p, the finite-slope subcomplexes C¢ (K, P )K/K and CEM(K —)<h,K/K’ Temain

perfect.
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Finally, let X C Ty be the kernel of some splitting of the inclusion Ty C
T(Q,); there are then certain submonoids XP* C ¥ C ¥, and we fix some
t € Lot

In the cases of interest to us, I’ will be a totally real field, completely split at
p, and H will be either GLy or the reductive group D> corresponding to the
units of a totally definite quaternion algebra over F' split at every place above
p. Fixing isomorphisms D, — Mato(F,) for each place v where D is split,
we may define integral models of H, via Hg,, (Ro) := (Ro ® Mata(OF,))”
for all O, -algebras Ry (whether H = GLgy or D*). In either case, we let
B, C Hgy, be the standard upper-triangular Borel and we let T, C B, be
the standard diagonal maximal torus.

For either choice of H, the adelic subgroup K(N) C (Ap s ® H(F))™ of full
level N is neat for N > 3 such that IV is prime to the finite places v where
H, # GLsy. Thus, if we assume p > 5, we may take KP? arbitrary.

For either choice of H, we define ¥ := {<w§1 w%) | ag > al} and A, =
1,571, Similarly, we define X% := [, ¥ and A, = IS =[], A,.
Then we fix Ug, = [I, (' =, ) Io] € L\H(F,)/I, and Uy, := [],, Us, -

For each prime ¢ # p, we fix a monoid A, C G(Qy) containing Ky, which
is equal to G(Q¢) when K, = G(Zy), such that (A, K;) is a Hecke pair
and the Hecke algebra T(Ay, K;) over Z, is commutative. Then we define
AP = H2¢p Ag and A := APA,. We write T(A?, KP) 1= ®¢£,T(Ag, Ko)
and T(A, K) := ®,T(Ay, Ky) for the corresponding global Hecke algebras.

A weight is a continuous homomorphism « : Ty — R* which is trivial on
Z(K), where R is a pseudoaffinoid algebra over Z,. We define weight space
W via

W (R) := {k € Homes(To, R™) | Kl z(x) = 1}

It can be written explicitly as the analytic locus of Spa (Zp [To/Z(K)],Z,[To/ Z(K)]

Then # is equidimensional of dimension 14 [F': Q]+, where  is the defect
in Leopoldt’s conjecture for F' and p.

The next step is to construct a sheaf of Hecke modules over weight space,
such that U, acts compactly and admits a Fredholm determinant. We will
actually use two such sheaves. If k : Tp — R* is a weight, then [JNI6]
construct certain modules of analytic functions A], and distributions Dj,.
Here r € (r.,1), where r, € [1/p,1). When r, € (1/p,1), they also con-
struct A" and D5", so that D is the dual of AS" and A’ is the dual of
DT, As in [HNT7] we fix augmented Borel-Serre complexes CEM (K, —) and
C?2 (K, —) for Borel-Moore homology and compactly supported cohomology,

respectively, and we consider

CM(K, A}

).
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as well as
C:K,D;) and Ce(K,Dg")

Now A’ and D, are potentially orthonormalizable, so CBM(K, A") := @;CPM(K, A”)
and C(K,Dr) := &;CY(K, D) are, as well. Since U, acts compactly on A,

and D7, this implies that there are Fredholm determinants Fy’ and F for

its action on CBM(K, A") and C*(K, D", respectively.

It turns out that F' and E! are independent of r, by [JN16, Proposition
4.1.2|; we set 9, = fm D and o, := lim AL, and we write F,, and
F! for the Fredholm determinants of U, on C¥(K, %) and CPM(K, 7.,
respectively. Then F), and F. define spectral varieties 2 C A;,/F and 2’ C

A;/F. Welet m: 2 — #7 and 7’ : 2’ — #F be the projection on the first
factor; they are flat morphisms of pseudorigid spaces.

By [IN16L Theorem 2.3.2], 2 has a cover by open affinoid subspaces V' such
that U := w(V) is an open affinoid subspace of #% and 7|y : V — U is
finite of constant degree. This implies that over such a V, F factors as
Fy = Qv Sy where Qv is a multiplicative polynomial of degree deg 7|y, Sy
is a Fredholm series, and Qy and Sy are relatively prime.

If such a factorization exists, we may make C2 (K, Zy) into a complex of &g~
modules by letting 7" act via U, !. Then the assignment V' — ker Q3 (Up) C
C*(K, 2v) defines a bounded complex £ of coherent &'#-modules, where
Qy(T) = TeR@vQy(1/T). If V.= 7n~Y(U), where (U, h) is a slope datum,
then JZ® is the slope-< h subcomplex of C?(K, 2y ). We set

%c* = @ZHZ(%)
which is a coherent sheaf on &.

Such factorizations exist locally, by an extension of a result of [AS]:

Proposition 3.1.1. Let R be a pseudoaffinoid algebra, and let xo € Spa R
be a mazimal point. Let F(T) € R{T}} be a Fredholm power series and fix
h € Q. Suppose Fy, # 0, and let Fy, = QoSo be the slope < h-factorization
of the specialization of F at xo. Then there is an open affinoid subspace U C
Spa R containing xo such that Fy has a slope < h-factorization Fy = QS
with Q specializing to Qo and S specializing to Sy at xg.

Proof. The existence of the factorization of F,, follows from the version of
the Weierstrass preparation theorem proved in [AS| Lemma 4.4.3]. Then the
proof of the proposition is nearly identical to that of [AS| Theorem 4.5.1], up
to replacing p with v and translating the numerical inequalities into rational
localization conditions. U

Since spectral varieties are flat over weight space, we will be able to use the
following result to show that slope factorizations exist:
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Theorem 3.1.2 (|[Con06, Theorem A.1.2]). Let f: X — Y be a flat map
of pseudorigid spaces. Then f is finite if and only it is quasi-compact and
separated with finite fibers, and its fiber rank is locally constant on'Y .

Remark 3.1.3. This result is stated in [Con06]| for classical rigid spaces, but
the proof goes through unchanged for pseudorigid spaces. The input from
non-archimedean geometry is the theory of formal models (and flattening
results) of [BL93al, [BLI3D]; Although the authors had in mind applications
to classical rigid analytic spaces, they worked in sufficient generality that
their results hold in the more general pseudorigid context. Omne uses this
theory to reduce to the corresponding algebraic result of [DR73l Lemma
I1.1.19].

We further observe that we have inclusions DI, C D" C D$ for any 1, <
s < r. Thus, the fact that F7 = F? implies that .2 = @;H! (K, 257) <, for
any r > 1.

We may carry out the same procedure for the action of U, on CBM(K, a7,),
and obtain a coherent sheaf .ZBM = @, HPM (K, o7;)<;, on 2. Let T denote
either T(AP, K?) or T(A, K). Both .7 and .42 are Hecke modules, so
we have constructed eigenvariety data (2, .4, T,) and (2, #BM, T, ')
(where ¢ : T — Endg, (#;) and ¢’ : T — Endg,, (#2™) give the Hecke-
module structures).

Finally, we may construct eigenvarieties from the eigenvariety data. Let .7
and .7’ denote the sheaves of & -algebras generated by the images of ¥ and
', respectively; in particular, if 27, C £ is an open affinoid corresponding
to the slope datum (U, h), then

T (Zup) = im (ﬁ(fo,h) ®z, T — Endg(s, ) (H (K, -QU)gh) =: Ty
and
7'(%,) = im (ﬁ(%}’h) @z, T— Bndgyy ) (HPM(K, o) Sh) =T},

Then we set

2& = SpaT
and

2g" = Spad’

¢’ =8pa

and we have finite morphisms ¢ : Zg — £ and ¢ : 2§ — 27, and Z,-
algebra homomorphisms ¢4 : T — O(23) and ¢g : T — ﬁ(ﬁ&”ér"). If
the choice of Hecke operators is clear from context, we will drop T from the

notation.

If T=T(A, K), then unlike [JN16], we are adding the Hecke operators U,
at places v | p to our Hecke algebras (and hence to the coordinate rings of
our eigenvarieties), not just the controlling operator U,,.
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3.2. The middle-degree eigenvariety. When F' = Q and G = H = GLs,
for any fixed slope h such that C? (K, Z,) has a slope-< h decomposition, the
complex C?(K, Z,)<p has cohomology only in degree 1, and H (K, %)<
is projective. As a result, the eigencurve is reduced and equidimensional,
and classical points are very Zariski-dense. For a general totally real field
F, the situation is more complicated. The complex C¢ (K, Z;)<p, lives in de-
grees [0, 2d] and we are still primarily interested in the degree-d cohomology;
indeed, the discussion of [Har87, §3.6] shows that cuspidal cohomological
automorphic forms contribute only to middle degree cohomology in the clas-
sical finite-dimensional classical analogue. However, there is no reason to
expect the other cohomology groups to vanish.

Instead, following [BHI17| we will sketch the construction of an open sub-
space ZGL, /Fmid C ZaL, /F Where Hi(K, 9,) vanishes for i # d; by [BHIT,
Theorem B.0.1|, all classical points of Zqr,, /» whose associated Galois rep-
resentation have sufficiently large residual image lie in Zqr, /pmia- The
cohomology and base change result [JN16, Theorem 4.2.1] shows that the
locus where Hi(K, %) = 0 for i > d + 1 is open, but we need to use the
homology complexes CEM (K, A,) to control Hi(K, 9,) for i < d — 1.

As in [BH17], the key points are a base change result for Borel-Moore homol-
ogy, and a universal coefficients theorem relating it to compactly supported
cohomology:

Proposition 3.2.1. e There is a third-quadrant spectral sequence
By = Tor®,(HBM(K, o) <p, S) = HEM (K, o, 5) <
e There is a second-quadrant spectral sequence

EY = Extiy(HPM(K, o)<, R) = HI(K, D) <h
These are spectral sequences of T(A, K)-modules.

The proof uses both the fact that D" is the continuous dual of A}, and the
fact that H:(K, D5 )<, = HL(K, D},)<p, for all r > ry.

Proposition 3.2.2. If (U, h) is a slope datum, then we have a natural com-
muting diagram
OU)@T(AK) —— T/U,h

|

/ red
_—
TU,h P]FU,h

. ; . red I : =
Thus, we have a morphism 7 : ELVGLZ P %GIQ /P and a closed immersion
- red
7 %GLQ/F — %-G‘LQ/F'
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Definition 3.2.3.
2 d = & ud AN U (Uit o7 M
GLy /Fymid * GLg /F j=d+1 supp(47) =0 supp (i« J

By construction, a point x € Zqr, /p of weight A, lies in the Zariski-open
subspace Zar, /Fmid C ZaL, /r if and only if Hg(K, ky @ Dy, )m, = 0 for
all j # d (where m, is the maximal ideal of the Hecke algebra corresponding
to x).

Proposition 3.2.4. (1) The coherent sheaf j/cd]gg-GLQ pmia 18 flat over
v
(2) Zar, /Fmid is covered by open affinoids W such that W is a connected
component of (1o q)~1(U), where (U, h) is some slope datum, and
T (W) acts faithfully on HI(W) = ew HY(K, D)<n (where ey is
the idempotent projector restricting from (mw o q)~Y(U) to W).

Proof. This follows from the base change spectral sequence, and the criterion
for flatness. O

3.3. Jacquet—Langlands. The classical Jacquet—Langlands correspondence
lets us transfer automorphic forms between GL2 and quaternionic algebraic
groups. Over Q, this correspondence was interpolated in [Che05] to give a
closed immersion of eigencurves 2% Q= %é}i /q; this interpolation was
given for general totally real fields in [Birl9]. We give the corresponding
result for extended eigenvarieties. However, as we have elected to work with
the eigenvariety for GLg /F' constructed in [JN16] via overconvergent coho-
mology, instead of the eigenvariety constructed from Hilbert modular forms,
we will never get an isomorphism of eigenvarieties, even when [F' : Q] is even.

Let D be a totally definite quaternion algebra over F', split at every place
above p, and let 0p be its discriminant. For any ideal n C & with (0p,n) =
1, we define the subgroup KIQX (n) C (Op ® Z)*

K2 ()= {g€(@p©2)* |g=(47) (modn)}
We may define a similar subgroup K1GL2 /F(n) C Resgy/z, GLsy(Z).

A classical algebraic weight is a tuple (k) € Zg‘;" together with a tuple
(vy) € Z¥>= such that (k,) + (v,) = (r,...,r) for some r € Z, where ¥
is the set of embeddings F' < R. Set e; := (") and ey := (£<), and
define characters x; : F* — R* for i = 1,2 via
ki(x) = H o(x)e
0EY o

Then (k1,k2) is a character on T(Z) which is trivial on a finite-index sub-
group of the center Zg(Z) = 0.
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Then we have the classical Jacquet-Langlands correspondence:

Theorem 3.3.1. Let k be a classical weight, and let n C Op be an ideal
such that (n,0p) = 1. There is a Hecke-equivariant isomorphism of spaces
of cusp forms

S (K" (n)) & 2w (kP2 (mp )

We will interpolate this correspondence to a closed immersion 2 px

ZaL, /F, where the source has tame level K IQX (n) and the target has tame

level K 1G L2/ F(n) We use the interpolation theorem of [JN19al:

Theorem 3.3.2 (|JN19al Theorem 3.2.1|). Let ®; = (%5, #;, Ti, ;) fori =
1,2 be eigenvariety data, with corresponding eigenvarieties %Z;, and suppose
we have the following:

e A morphism j: 2 — 25
o A Z,-algebra homomorphism Ty — Ty

o A subset 2V C 21 of mazimal points such that the Ta-eigensystem
of x appears in Mo(j(m1(x))) for all z € 2.

Let & C 21 denote the Zariski closure of ' (with its underlying reduced
structure). Then there is a canonical morphism i : Z — 25 lying over j,
such that ¢5-00 = 1" 0 ¢g,. If j is a closed immersion and o is a surjection,
then © is a closed immersion.

We remark that in the presence of integral structures, we can make a sharper
statement:

Corollary 3.3.3. With notation as above, suppose that the Z; = Spa R; are
affinoid, with R; o C R; rings of definition such that j is induced by a mor-
phism Spf R1o — Spf Rap, and suppose that M; = I'(25, #4;) admit R; -

lattices M; o stable under the actions of T;. Let Ré,o ;= im (Ri,O ® T; — Endg,

and let Z°¢ denote the closure of 2 in Spf R/I,U' Then there is a morphism
j() : ?0 — Spf R/270.

Proof. As in the proof of [JNI9al Theorem 3.2.1|, one reduces to the case
where Ry := R19 = Roo and T := T; = T», and one considers the actions
of T1 ® Tg on Mg ® Mao. Then we have quotients

R3p:=1m(Ry® T — Endpr, (M1 ® May)) — R;,o
Since 2~ C %> and Spf R3¢ is separated, we have 2o C Spf R/2,07 as desired.
O
We take 24 = 25 = #r x G,,,. In order to define T = T, = Ty, we set

_ [GLy(F,) it vtpopn
O\ KR (w), ifv|opn

0 (MZ 0))
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For v | p, we take A, as in In other words, T is the commutative
Z,-algebra generated by T, = K, (1 o ) K] and Sy := [Ky, (7" &, ) K]
for v 1 popn and Uy, for v | p.

However, we cannot immediately combine this interpolation theorem with
the Jacquet—Langlands correspondence, because our choice of weight space
means that classical weights may not be Zariski dense unless Leopoldt’s
conjecture is true. More precisely, given a classical algebraic weight, we
constructed a character on T(Z) trivial on a finite-index subgroup of 07},
and conversely, characters on T(Z) trivial on a finite-index subgroup of &
yield classical algebraic weights. This equivalence relies on Dirichlet’s unit
theorem.

This means that there are two natural definitions of p-adic families of weights,
Wy = SpaZp[(Resg, z, Gm)*xZ,]*" interpolating classical algebraic weights,
and #7 interpolating characters on T, and the equivalence of those two def-
initions depends on Leopoldt’s conjecture.

Fortunately, the gap between these weight spaces can be controlled: there
is a closed embedding #}. < #%, and the twisting action by characters on
ﬁ;yp/ﬁ;* defines a surjective map
05| O8T X Wi — WEE

We say that a weight A € W;ig (Q,) is twist classical if it is in the ﬁﬁp/ﬂ;’Jr(Qp)-
orbit of a classical weight. Then twist classical weights are very Zariski dense
in WF
In addition, we may define a twisting action on Hecke modules, as in [BH17].
Let Galp, denote the Galois group of the maximal abelian extension of F
unramified away from p and oo, and let n : Galg, — 6; be a continuous
character. Global class field theory implies that Galg, fits into an exact
sequence

1— 0F /05" — Galpy — ClE — 1

where CIIJE is the narrow class group of F' (and hence finite). Suppose M is

an R-module equipped with an R-linear left Aj,-action. Then we may define

a new left A,-module M(n) := M ® 77*1|ﬁ; , where the action of g € A, is
sP

given by
g -m= (n‘llﬁ;p(detg -p’zv"’”(d“g))) (g -m)
In particular, Z.(n) = %,-1.,, by [BHI7, Lemma 5.5.2], and there is an

isomorphism

twy, : HY (K, 2x) = H (K, Z-1.,

Suppose € Zpx(Q,) is a point with wt(z) =: A, corresponding to the

system of Hecke eigenvalues ¢, : T — Qp. Then we define a new system of
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Hecke eigenvalues, via

N(wy)(T) ifvfpopnand T =T,
twy, (V) (T) = < n(wy)?v(T) ifvi{popnand T =S,
n(wo)e(T)  ifv|p

Then it follows from [BHI7, Proposition 5.5.5] that tw, (1) corresponds to
a point twy,(z) € Zpx of weight n71|,x - k.
D .

We say that a point x € 2 (Q,) is twist classical if it is in the @(Qp)-
orbit of a point corresponding to a classical system of Hecke eigenvalues.

Proposition 3.3.4. Tuwist classical points are very Zariski dense in Zpx .

Proof. Recall that 25 admits a cover by affinoid pseudorigid spaces of the
form Spa .7 (Zy1), where 7 : 2775, — U is finite of constant degree, and

y(ﬁp[]’h) = im (ﬁ(ff(],h) ®zp TP — Endﬁ(guh) (H:(K, @U)Sh)

We write U = Spa R for some pseudoaffinoid algebra R over Z,. We will show

that Spec.7(Zyn) — SpecR carries irreducible components surjectively

onto irreducible components, and we will construct a Zariski dense set of
tw—cl tw—cl

maximal points W;'; ¢ C U such that the points of wt=! (W) are twist
classical. By [Che04, Lemme 6.2.8], this implies the desired result.

To see that irreducible components of Spec 7 (27 ) map surjectively onto
irreducible components of Spec R, we observe that D is totally definite, so the
associated Shimura manifold is a finite set of points and H; (K, Zy) vanishes
outside degree 0. The base change spectral sequence of [JN16, Theorem 4.2.1]
implies that the formation of H(K, Zp)<; commutes with arbitrary base
change on U, which implies that H°(K, Zy)<y, is flat. Then [Che04, Lemme
6.2.10] implies that Spec .7 (Zy5) — Spec R carries irreducible components
surjectively onto irreducible components, as desired.

Thus, it remains to construct W(tjwh_d. Birkbeck proved a “small slope implies
classical” result [Birl9, Theorem 4.3.7|, and constructed a set Wﬁlh Zariski
dense in U N #7, such that the points of Wt_l(Wﬁl’h) are classical (see the

proof of [Bir19, Theorem 6.1.9]). Setting W, to be the ﬁ;p/ﬁ;’Jr (Q,)-

orbit of W, , [BHI7, Lemma 6.3.1] implies that points of wt=! (W%, ~!) are
twist classical, and we are done. O

As a corollary, we deduce that Z5x has no components supported entirely
in characteristic p:

Corollary 3.3.5. %Ef is Zariski dense in Zpx.

We may use similar arguments to show that 2« is reduced:
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Proposition 3.3.6. The eigenvariety 2= is reduced.

Proof. We first show that %gf is reduced. By [JNI6l Proposition 6.1.2]
(which adapts [Che05, Proposition 3.9]), it is enough to find a Zariski dense
set of twist classical weights W7, C U C W;ig for each slope datum (U, h)
such that .#Z(Z2y,n)x is a semi-simple Hecke module for all £ € W7, Birk-

beck [Birl9, Lemma 6.1.12] constructed sets W[/f; Zariski dense in U ﬂWé’rig
with this property, and we will again use twisting by p-adic characters to
construct Wp7,,.

Ifn:0 ;,%p /O ;’Jr — 6; is a character, we have an isomorphism

twy : HY (K, ) = HY (K, D1,
By [BHI17, Proposition 5.5.5|, tw, is Hecke-equivariant up to scalars, so
M (2u,n)x is a semi-simple Hecke module if and only if .# (25 -1.p4);1.x
is. Thus, we may take W), to be the ﬁ;’p/ﬁ’;#r(@p).—orbit of UU/W(/]’fh, as
(U', h) varies through slope data, and we see that 2~ [r;xg is reduced.

Now let X C Zpx be an open affinoid subspace, and let {X;} be an open

affinoid cover of the rigid analytic locus X*&  X. Since X ~ X" contains
no open subset of X, the natural map

o(xX) = [Jex)
is injective. Each €(X;) is reduced, so 0(X) is, as well. O

Now the Jacquet—Langlands correspondence for eigenvarieties follows imme-
diately:

Corollary 3.3.7. There is a closed immersion Zpx < Zqr, r inter-
polating the classical Jacquet—Langlands correspondence on (twist) classical

points, where the source has tame level KlgX (n) and the target has tame level
L2 /F
1 (n).

In particular, if [F' : Q] is even, we can find D split at all finite places and
ramified at all infinite places. Then we may take in particular n = O to
obtain a morphism of eigenvarieties of tame level 1.

3.4. Cyclic base change. Fix an integer N € N, and let S be a finite set
of primes containing every prime dividing p/N. For any number field F', we
again let K% C GL2(AFr) be the compact open subgroup given by

K% = {g € GLy(Ap) g = (31) (mod N)}
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and we let Kp := K%I. We also define the Hecke algebra
T3 = Tay, /p = QugsT(GLa(F,), GLa(OF,))

There is a homomorphism ag : ’]I‘f, — T% induced by unramified local Lang-
lands and restriction of Weil representations from Wr to Wq.

Similarly, there is a morphism of weight spaces #q 0 — #q — #r induced
by the norm map Tro — Tq,-

In the special case where F'/Q is cyclic, |[JN19a] interpolated the classical
base change map:

Theorem 3.4.1 ([JN19a, Theorem 4.3.1]). E| There is a finite morphism

S S
‘%GLQ /Q,cusp,F—ncm - %GLQ /F

lying over Wq — Wr and compatible with the homomorphism U}?,

Here the source includes only cuspidal components with a Zariski-dense set
of forms without CM by an imaginary quadratic subfield of F'.

We wish to characterize the image of this map when F' is totally real and
completely split at p (so that the “F - ncm” condition is vacuous). We further
assume that [F': Q] is prime to p.

Remark 3.4.2. We expect that it is possible to construct a base change
morphism and characterize its image for more general cyclic extensions of
number fields F’'/F’; however, for simplicity (and compatibility with [JN19al)
we have chosen to restrict to this setting.

Let Gal(F/Q) = (7). Then Gal(F/Q) acts on GLy/, stabilizing T C B and

I, and also stabilizing the tame level K%.. We will construct a “Gal(F/Q)-

» o-S,Gal(F/Q)
2l /F

cyclic base change map; Xiang [Xial8| used a similar idea to construct p-adic
families of essentially self-dual automorphic representations.

We first observe that Gal(F/Q) acts on T3 via (7 -T)(g) = T(77%(g)) for
all T € T and g € GLa(Agf). Then for any 6 € A, (7 [KpdKp])(g) =
[Krpr~(6)KF|(g), and in particular, 7 - Ug, = Uy (), and hence Gal(F/Q)
fixes Up. Similarly, we have an action of Gal(F/Q) on #q given via (7 -
N (g9) = A(77%(g)); the image of #q in # is the diagonal locus, i.e., exactly
the Gal(F'/Q)-fixed locus.

Since U, is fixed by Gal(F'/Q), we see that if x is a weight fixed by Gal(F'/Q),
then the Fredholm determinant F,(T) of the action of U, on C*(Kp, %) is

fixed GLy, p-eigenvariety and show that it is the image of the

2The authors only construct the morphism when N > 5, to maintain their running
assumption that the level is actually neat (as opposed to containing an open neat subgroup
with index prime to p). However, the argument is identical for small V.
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fixed by Gal(F/Q). Thus, we have a spectral variety 2 G(F/Q) WFGal(F/Q) X
Alan gyer ng}al(F/Q)'

Lemma 3.4.3. Let k : Ty — R* be a weight fixred by Gal(F/Q). There
is an action of Gal(F/Q) on C*(Kp, %) and if D admits a slope-< h
decomposition, the action of Gal(F/Q) stabilizes C*(Kp, D)<

Proof. Referring to the definition of ), for an arbitrary weight x, we have

D = @Dz, where DI is the completion of a module D, with respect to

a norm | - |,. The module D, itself is the continuous dual of the space
A,. C C(I, R) of continuous functions f : I — R such that f(gb) = x(b)f(g)
for all g € I and b € By. It follows that we have a map 7 : Ax — Ay,
(since the action of Gal(F/Q) preserves both I and By). If & is fixed by 7,
we obtain a dual action of Gal(F'/Q) on D, and hence D}, and %,.

Since K% is also stable under the action of Gal(F/Q) and the actions of
K%, and Gal(F/Q) on 2, commute, by functoriality we obtain an action
of Gal(F/Q) on C*(KF,%:). Moreover, the action of Gal(F/Q) fixes the
Hecke operator Up, so [IN16, Proposition 2.2.11] implies that the action of
Gal(F'/Q) also preserves C*(Kr, Zi)<h.- O

Lemma 3.4.4. Let k : Ty — R* be a weight fized by Gal(F/Q). For any
T € T, we have 7-T = 10T o7~ as operators on C*(Kp, D).

Proof. We may assume T = [Kpd K] for some 6 € A. Then 7 [KpdKFp| =
[KpT(0)KF], and the corresponding morphism
C*(Kp, D) — C*(r(8)Kp7(8)~Y, )
is induced by the conjugation map 7(8) Kr7(8)~! — K and the map Z, —
Py, given by d — 7(6)-d. But 7(8) Kp7(0) ' =7 (67 1 (Kp)d '), so we may
factor the conjugation map as
r(O)Kpr(0)™' T 57 (Kp)o~! = r N (Kp) 5 Kp

Similarly, d + 7(9) - d factors as 7 o T o 7~ !, so our morphism of complexes
also factors as desired. O

We may restrict .#Z) to Z Gal(F/Q). we denote this restriction by #* and by
abuse of notation, we again use .7 to denote the sheaf generated by the image
of ']I‘IS; in &nd ycar/q) (H*). Then the slice of the eigenvariety ‘%éng /P OVer

ngal(F/Q) is, by definition, Spa.7.
Both T(AP, K7,) and End gy (2£) have actions of Gal(F/Q), and Lemma
implies that they are compatible. Thus, 7 (V) and %égh /F|WGa1(F/Q) have
F
actions of Gal(F/Q).

The subspace of Zqr, /r fixed by Gal(F/Q) corresponds to the sheaf V'
T (V)cai(r/q) of co-invariants of 7; by definition, 7 (V)qa(r/q) acts on
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() 9T and the map 7 (V) gair/q) — Endycair/a) ((%*)GM(F/ Q>)
is injective. Moreover, since Gal(F'/Q) is a finite group with order prime to p,
the formation of (%*)Gal(F/Q) commutes with specialization on 2 G2l(F/Q),

The above discussion gives us an eigenvariety datum

(ZCE/Q) () S/ (TF) a7 /q) )

and we let %S’Gal(F/Q)

GLa /F denote the corresponding pseudorigid space.

S,Gal(F/Q)
2 Gl IF - %éng JF

and the image of the morphism Zqt, /Q.cusp = £GL, /& constructed in [JN19al

§4.3] is contained in the image of %&f(/ng)

Proposition 3.4.5. There is a closed immersion

Proof. Both assertions follow from [JN19al Theorem 3.2.1]. The first fol-
lows because T(AP, K?) — T(AP, K?)gai(r/q) is a surjection. The second
follows because classical points are very Zariski-dense in Zqr, /q, and the
fact that the image of a classical system of Hecke eigenvalues under the clas-
sical cyclic base change map is fixed by Gal(F/Q); since (% (z))U/Q =
() FEQ) () for all z € ZCUEF/Q) | we may again apply [IN19a, Theo-
rem 3.2.1]. O

We let

S,Gal(F/Q)o _ ,-S.Gal(F/Q) s
2L, P =2ty r N 2L, /P mid

and we let %&S’%F/Q)"’ denote its Zariski closure in &Véng /P

@ S.Gal(F/Q).0

Lemma 3.4.6. Classical points are very Zariski dense in GL, /F

Proof. If (U, h) is a slope datum and W C '%éSLZ /18 a connected affinoid
subspace of the pre-image of U, then (W) = ey 7 (U) and 4 (W) =
ewH} (K, Zu)<n, where ey is the idempotent projector to W. If W C

%GSM JFmia> then A7 = ewHY(K, 2u)<n and HY(K, Di7) <), is a projective

Oy (U)-module. It follows that the restriction of .Z to %gﬁ?l}w Qe s

vector bundle, and since |Gal(F/Q)| is prime to p, its Gal(F'/Q)-invariants
remain projective.

Now we may apply [Che04, Lemme 6.2.10] to conclude that 7 (W) is equidi-
mensional of dimension dim & .y Gal(F/Q) (U), and every irreducible component
F

of Spec 7 (W) surjects onto an irreducible component of Spec & cair/q) (U).
F

If z € W has a classical weight that is sufficiently large (where “sufficiently
large” depends on h), then x corresponds to a classical Hilbert modular form.
But sufficiently large classical weights are Zariski dense in U, so [Che04)
Lemme 6.2.8] implies that classical points are dense in W. O
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Remark 3.4.7. The proofs of Proposition [3.4.5] and Lemma [3.4.6| are the
only times we use our assumption that |Gal(F/Q)| is prime to p. If we
restricted to the rigid analytic locus (where p is invertible, so (# *)Gal(F/ Q)
is unconditionally projective, with (J#*(z))S2E/Q) = (x)GallF/Q) (4,
this hypothesis would be unnecessary.

Corollary 3.4.8. The image of the cyclic base change morphism in 2.5

[ GLo /F,mid
is exactly %gLﬁjﬁF/ Qe

S,Gal(F/Q),0
Z GLy /F

image. Moreover, cyclic base change carries any classical point of Zqr,, /qQ.cusp
to a point of g 3GalF/Q)e

GLy /F
%&f*};@/ Q- i5 in the image of cyclic base change, by the classical theorem,

so Lemma [3.4.6] implies the desired result. O

Proof. Since the morphism — Zar, s 1s finite, it has closed

On the other hand, every classical point of

3.5. Galois representations. In [JN16, §5.4|, the authors construct fam-
ilies of Galois determinants (in the sense of [Chel4]) over the eigenvarieties
Za when G = Resp/q GLy, and F is totally real or CM, and prove that
they satisfy local-global compatibility at places away from p and the level.
Then the Jacquet—Langlands correspondence lets us deduce the following;:

Theorem 3.5.1. Let D be a quaternion algebra over a totally real field F,
such that F s totally split at p and D is split at all places above p. Let
K = KPI C (Aps® D)™ be the level, and let S be the set of finite places v
of F' for which D is ramified or K, # GLa(OF,). Then there is a continuous
2-dimensional Galois determinant D : Galps — O(Zpx)t such that

D(1 - X - Frob,) = P,(X)
for allv ¢ S, where P,(X) is the standard Hecke polynomial.

Moreover, if v | p then for every mazimal point x € Zpx of weight kg, =
(K1, ko), we let ¥ : O(Xpx)t — k(z)T denote the corresponding spe-
cialization map. Then there is a proper Zariski-closed subspace Z C Zpx
such that for x ¢ Z, the Galois representation corresponding to Dx]Galeviis
trianguline with parameters 01,02 : F = k(v)*, where

(51|ﬁ; = H;é\ﬁvx and 61(wy) = Y(Uw,)

and
02l g = (| g Xeye) ™" and Sp(w) = (Lo (7 1) L)

Proof. It only remains to check local-global compatibility at places above p.
But this is true for non-critical classical points by work of Saito, Blasius—
Rogawski, and Skinner, and it is true for twists of those classical points by
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the definition of twisting. Then the result follows from [KPX14, Corollary
6.3.10] and [Bel23al, Theorem 6.8]. O

Remark 3.5.2. For each point x € 2 px, there is a residual Galois deter-

minant D, valued in a finite field. These residual Galois determinants are
constant on each connected component of 27,x, as a consequence of [Cheld,
Lemma 3.10].

As in Corollary [3.3.3] we can make a sharper local statement in the presence
of integral structures. Suppose k : Ty/Z(K) — R* is a weight, where R is
a pseudoaffinoid algebra equipped with a norm adapted to x, and Ry C R
is the corresponding unit ball (so in particular, x takes values in Ry). If

(Spa R, h) is a slope datum, for any r > r, we define
HY(K,Dg")<p = im (H°(K,D"°) — H(K,D5")<h)

and
T2 = im (Ro ® T — Endg, (H°(K,D5"%)<n))

Corollary 3.5.3. With hypotheses and notation as above, there is a 2-

dimensional Galois determinant Dy : Galps — ']I':Q’(;l’red such that

R® @py Do = R® @p(2,,,)+ D

Proof. This is a corollary of the construction of [JN16, §5.4], rather than of
Theorem For each maximal point € Spa R with residue field L and
ring of integers 07, let K, be the composition of k with Ry — 0. By [JN16),
Corollary 5.3.2(2)| combined with Corollary there is a 2-dimensional

Galois determinant D, : Galpg — ’]I‘::’Z’;Led valued in the reduced quotient

<r,o .. .
of Tm, <h- We have an injection

<r,o,red <r,o,red
Tz = [T
T

: : : <r,o,red .
where the x range over maximal points of Spa R. The ring ’]I‘K, <p i com-

pact since it is a finite Ro-module, so by [Chel4] Example 2.3.2| the TZ”;’ZBd—
valued determinants glue to Dy.

3.6. Quaternionic sub-eigenvarieties. In order to study suitable spaces
of overconvergent quaternionic modular forms, we will need to define and
study eigenvarieties parametrizing quaternionic modular forms with certain
auxiliary data fixed. We let F' be a totally real number field totally split at
p, and we let D be a totally definite quaternion algebra over F', split at all
places above p. We fix a level K C (Apf®p D)™ and monoid K C A C
(Aps®p D)™, and we set T to be either T(AP, K?) or T(A, K).

In order to construct an eigenvariety for D, we fixed a Borel-Serre complex
C2(K,—) and we considered the cohomology C?(K, Z,). However, because
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we assumed D is totally definite, the associated Shimura manifold is a finite
set of points, and so the cohomology of C2(K,—) = C*(K,—) vanishes
outside of degree 0.

Thus, we can give an extremely concrete description of the automorphic
forms of interest to us and of the Hecke operators acting on them. Suppose
that M is a left R[A]-module, for some pseudoaffinoid algebra R. Then if
[ D*\(Aps ®F D)* — M is a function and v € A, we define ,|f via
4|f(g) =~ f(g7). Then

HY(K,M)={f:D*\(Aps@r D) = M | ,|f = f forall y € K}

We can describe the Hecke operator [KgK] : HY(K, M) — H(K, M) ex-
plicitly for any g € A; we decompose the double coset KgK =[], ¢;/< as a
finite disjoint union of cosets, and we have

(KgKf = glf

)

The first piece of auxiliary data we want to fix is the central character. If
AL = R{ is a continuous character such that £, - ,x agrees with
) v Fy

the action of K, N & ;v on M for all finite places v of F', we may extend the

action of K on M to an action of K - A;f, by letting A;f act by £. Then
we define

HO(K,M)[¢] :={f € H'(K,M) | .|f = [ for all z € A} ,}

If we write D*\(Ap s ®p D)*/K = [1;c; DXgiKA;;f for some finite set of
elements g; € (Ap s ®@r D)*, the natural map

HO(K, M)[€] = @ier M EAT N9 D90/ F
fe (f9)

is an isomorphism.

The calculations of [Tay06, Lemma 1.1] show that (KA . N g, D> g;) ) F*
is a finite group with order prime to p for all i (since we assumed p #
2). Thus, if M is a potentially orthonormalizable Banach R-module, then
so is HO(K,M)[¢], and we will be able to apply the formalism of slope
decompositions to quaternionic modular forms with fixed central charac-
ter. More precisely, we may consider the action of a compact operator
U on HY(K,M)[¢]. If H'(K,M)[¢] admits a slope-< h-decomposition,
then H°(K, M)[¢]<p is a finite R-module which is a direct summand of
HO(K, M)[€]. Since HY(K, M)[€] is potentially orthonormalizable, H°(K, M)[¢]<p,
satisfies the property (Pr) of [Buz07] and by [Buz07, Lemma 2.11] it is ac-
tually projective as an R-module.

The coefficient modules of interest to us are the modules of distributions 2,
constructed in [JN16], and we fix a character ¢ : Alfﬂf/FX — Z,[Tv/Z(K)]*
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as above. The operator U, commutes with the action of A;} f J/F* on 9,
given by &, so U, acts compactly on C* (K, Z,)[¢]. We may construct a cor-
responding spectral variety Z¢ and eigenvariety datum (2%, #¢, T, ), where
My is the coherent sheaf on 2% coming from factorizations of the character-
istic power series of Up; we write 2« . for the corresponding eigenvariety.

By construction, H(K, Z,)[£]<p is a projective R-module whenever (U, h) is
a slope datum. Then [Che04, Lemme 6.2.10] implies that if .#; is non-zero,
Z, Dx ¢ 1s equidimensional of the same dimension as V.

Moreover, for each maximal point x € 27« ¢ the corresponding Hecke eigen-
system appears in Z)x (with unrestricted central character), by construc-
tion. Then the interpolation theorem [JN19a, Theorem 3.2.1] implies that
there is a closed immersion %" 5‘)‘;1 e Z, px, and dimension considerations
imply that its image is a union of irreducible components of Zpx.

This implies in particular that as (U, h) runs over slope data for C* (K, 2,,)[¢],
the sets W[’]S}SL C U of semi-simple weights constructed in Proposition [3.3.6
are Zariski dense. Then we may repeat the argument of that proposition to
conclude that 27 ¢ is itself reduced.

We have shown the following:

Proposition 3.6.1. Given a character  : A ,/F* — O(Wp)* as above,
there is an eigenvariety Zpx ¢ of quaternionic modular forms with central
character €. It is reduced and equidimensional, and it is naturally identified
as a (possibly empty) union of irreducible components of Zpx.

We also wish to introduce eigenvarieties localized at maximal ideals of Hecke
algebras. Let m C T be a maximal ideal. By Theorem and Re-
mark the residual Hecke eigenvalues are locally constant on 2. It
follows that the restrictions .#, and .#; , are supported on unions of con-
nected components of 2, which we write 2y, and 2y, respectively. In par-
ticular, if (U, h) is a slope datum, then H(K, Zp)<pm and H(K, i) <h ¢m
are again finite projective &'(U)-modules. Then an identical argument shows
the following:

Proposition 3.6.2. Given a character & : A;ﬁf/FX — O(Wr)* as above
and a mazimal ideal m C T as above, for any choice of Hecke algebra T’

(possibly different from T) there are eigenvarieties %g; o and %g; m of
quaternionic modular forms localized at m. They are reduced and equidi-
mensional, and they are naturally identified as (possibly empty) unions of

!
connected components of ,%”gx.

Remark 3.6.3. We write h = m/n and consider the closed ball By, :=
{IT"] < |[u=™|} C A}, for some open affinoid U C #p. Setting Zy, =
ZaNByy (resp. Zyyp := Zem N Byy), we abuse terminology slightly and
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say that (U, h) is a slope datum for 2= , (resp. Zpx @m) if Zyp — U is
finite of constant degree.

4. OVERCONVERGENT QUATERNIONIC MODULAR FORMS

4.1. Definitions. We will use overconvergent cohomology to define and
study spaces of overconvergent quaternionic modular forms. Maintaining our
notation from §, and in particular §, we fix alevel K C (Ap s ®F D)*
and monoid K C A C (Ars®p D)™, and we set T to be either T(A?, KP)
or T(A,K).

The coefficients for our families of overconvergent modular forms will be
a pseudoaffinoid algebra R over Z,; we set U := SpaR. We also fix a
pseudouniformizer v € R. If k : To/Z(K) — R* is a weight, we choose a
norm |-| on R so that |-| is adapted to x and multiplicative with respect to
u, and log,|-| is discrete (which we may do, by Lemma below). Then

the unit ball Ry C R is a ring of definition containing w.

Fix some r > r,.. We let D5;° C D). denote the unit ball, and we also consider
larger modules of distributions D" > DI, with unit ball D™ C DI
Following we also fix a character & : AE s /F* — R* such that & ox,

agrees with the action of K,N&}; on Dy, that is, such that &| - - ,x is trivial
v v Fuy

for vt p and ﬂlmﬁ; is equal to the action of I, N & on Dy, for v | p.

The construction of the required norm on R is a variant of [JN16, Lemma
3.3.1], and we refer to that paper for the terminology:

Lemma 4.1.1. If R is a pseudoaffinoid algebra over Z, and k : Ty / Z(K) is a
weight, there is a norm |-| on R such that |-| is adapted to k and multiplicative
with respect to u, the unit ball Ry is noetherian, and log,|-| is discrete.

Proof. Choose a noetherian ring of definition Ry C R formally of finite type
over Z,. As in the proof of [JNI16, Lemma 3.3.1|, x(Tp) C R° and &(T¢) C
14+ R°°; since both groups are topologically finitely generated, we may replace
Ry with a finite integral extension and assume that x(Ty) C Ry, and we may
find some integer m > 1 so that (7)™ C 1+ uRy.

Let R := R[u'/™], let R} := Ro[u'/™], and let v’ := u"/™. Then R’ is a
finite R-module, so it has a canonical topology, and the subspace topology it
induces on R agrees with the original topology on R. Now for any a € R+,
we may define a norm |-|" on R’ via

I7'|" = inf{a® | v/°r" € R}}

The restriction of || to R has the desired properties. O

When U is a subspace of #r, we can make a more precise statement. In
this case, R is reduced, so the ring of power-bounded elements Ry := R° is
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a ring of definition. Then we may define a norm |-| on R via
|r| :=1inf{p™" | r € u"Ro,n € Z}

Lemma 4.1.2. If U is a rational subspace of #r and k is the restriction of
the universal character on #r, then || is adapted to k.

The proof is essentially identical to that of [JN16, Lemma 6.3.1].
Recall that we have Fredholm power series
F,:=det (1 -TU,| H(K,D}))
and
Fy¢:=det (1-TU, | H (K, D)[¢])
and they are independent of r > r,, by [JN16L Proposition 4.1.2].

If HO(K, D) (resp. HY(K,Dr)[¢]) admits a slope < h-factorization, then
the formalism of slope decompositions implies that we have a decomposition

HD(K7 D,‘Z) - HO(K7 D;)Sh S HO(K7 D,‘:)>h
resp.
H(K,Dy)[€] = H°(K, Dy)[€)<n & H(K, D) (€] >n
for all » > r., and the decomposition is independent of 7.
Moreover, if 7/ € [ry, ), the inclusions
Dy C D" C D,

induce an isomorphism H(K,Dl)<, — H°(K,D. )<p. We may therefore
define

HO(K,D")<p = im (H°(K, Dy)<h — H(K, D7)
and

HO(K,D5")[€)<n = im (H°(K, D;)[€] <n — H (K, DF")[E])

We make the additional definitions
HY(K,Dg"™°) <y, == im (H*(K,D5"™°) — HY(K,Dg") — H* (K, D5 ) <p)
and
H(K, D) [€] < := im (H(K, D5"°)[¢] — HO(K, D5")[€] — H(K,D5")[¢)<n)

We are now in a position to define spaces of overconvergent quaternionic
modular forms, together with an integral structure and Hecke algebras:

Definition 4.1.3. Suppose that H°(K, D<) admits a slope-< h-decomposition,
where h = a/b for a, b positive and relatively prime integers. We define the
modular forms of weight k and slope-< h to be the module

S(K)<p = H (K, D) <n;
it is a module over the Hecke algebra
Ty,<h :=im (T ®z, R — Endg(S.(K)<n))
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We define two modules of integral overconvergent modular forms (and cor-
responding Hecke algebras). As in § we set
ST (K)<n = H (K, D)<,
and
T2 = im (T ®z, Ry — Endg, (H°(K,D5"°) <))

We also define a second lattice
S2(K)<p 1= im (TH{u U5 yp) @1 S (K) < = SelK)<n)
which is stable under the operators u“U;f, as well; we set

TS, < o= im (T[uU!] ©7, Ro — Endg, (S3(K)<h))

If€: A /F* — Ry is a continuous character as above and H°(K, Dg")[¢]
admits a slope-< h decomposition, we define the modular forms with central
character € to be S, ¢(K)<p := HY(K, 9,)[¢]<n and similarly for integral
modular forms with central character &.

Remark 4.1.4. We expect that Sg(K)<p and the corresponding Hecke al-
gebra T; <5, depend on 7, but we have suppressed that from the notation for
the sake of compactness.

Remark 4.1.5. We will write Tf{; <, and T ., for these Hecke algebras
if the level is not clear from context.

We again write h = a/b with a,b positive and relatively prime integers. If
Sk(K)<n (resp. Sk¢(K)<p has rank d, then the characteristic polynomial of
uaU;S is a monic degree-d polynomial over R. By the definition of a slope
decomposition, its roots are integral at every rank-1 point of Spa R. Hence
the coefficients actually live in R° and u*U_? is power-bounded on S (K)<p,
(resp. Sk ¢(K)<p. In particular, if R is reduced and Ry = R°, we see that
Se(K)<n (resp. Sy ((K)<p) is given concretely by

Z H aU zv S<r0( )Sh)
(iv)€{0,...,d—1}>P v|p
In particular, U~V (S2(K)<p) € S5"°(K)<p, (and similarly for 52 o (K) <p).

We now fix a choice of Hecke algebra. Let S denote the set of places of F'
such that v | p, D is ramified at v, or K, # Of, . For v ¢ S, we define

Sy=[K (™ &,)K], T,:=[K(',,)K]ecK\(Apr®D)*/K
for some fixed uniformizer w, of OF,.

We define the Hecke algebra T to be the free commutative Zj-algebra gen-

erated by {Usg, }yp and {Su, Tw}wgs. Since A, acts on the modules of

distributions Ds™° and Hecke operators away from p preserve the slope de-
.. . <r,o

composition, we may view Sg " (K)<p, as a T-module.
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We also describe the so-called diamond operators, after modifying the tame
level KP. Suppose we have a finite set @) of places of F' such that for each v €
Q,v{p, Nmv =1 (mod p), D is split at v, and K,, = GL2(OF,). For each
v € @, we again let Ko(v) C H(F,) denote the subgroup {({3) mod v},
and we consider the homomorphism

Ko(v) = k(v)* = A,

given by composing

with the projection to the p-power quotient k(v)* — A,. Let K~ (v) denote
the group

—{ ) € Ko(v |ad_1r—>11nAv}
for each v € @), and let

= [[ &) - ] -

veQ v¢Q
and
=[x ]] &
veQ 0¢Q

Then Ko(v)/K~(v) 2 Ay, and every h € Ag = [[,cq Ay gives rise to a
Hecke operator

(h) = [K-(QRE(Q)]

on S5 (K~(Q)), where h is a lift of h to Ko(Q); (h) is independent of the
choice of h.

We let Tg, be the free commutative Zj-algebra generated by U, }olp» 150, Toogs,
and {Usz, }veq, where U, = [K~(v) (§ 2 ) K~ (v)]; it acts naturally on

0 oy

ST (K~ (Q))<n, and we let 'IFETLO(Q) p, denote the Rp-algebra its image gen-

erates in Endg, (S5 (K~ (Q))<p). Similarly, we let Tg o be the free commu-
tative Z,-algebra generated by {Us, Yolps {Svs To}ogs, and {Ug, }veq, where

U, = [Ko(v) (§ =, ) Ko(v)]-

4.2. Integral overconvergent quaternionic modular forms. We need
to make a closer study of the structure of the integral modules of distributions
and their finite-slope subspaces.

Lemma 4.2.1. If k : Ty/Z(K) — R* is a weight and H°(K, 9,) (resp.
HY(K, 9,)[€]) admits a slope-< h-decomposition, then S(K)<p (resp. Sqe(K)<n)
is a finite projective R-module. If the Fredholm power series F, has a slope

< h-factorization, then Sy (K)<p (resp. Sk e(K)<p) is compatible with arbi-
trary base change on R.
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Proof. We prove the result for HO(K, 9,); H(K, 2,)[¢] is handled similarly.
It is enough to handle the case where the tame level is neat. Then Sy (K)<p
is a direct summand of the potentially orthonormalizable Banach R-module
H°(K, 9,) which is finitely generate over R, so by [Buz07, Lemma 2.11] is
is projective.

If the Fredholm power series F}; has a slope-< h-factorization, then the slope
decomposition is functorial in R, by [JNI6, Theorem 2.2.13]. O

Corollary 4.2.2. If k : To/Z(K) — R is a weight and H°(K, 9,) (resp.
H(K, 2,)[¢]) admits a slope-< h-decomposition, then Sis"°(K)<p, (resp.
S;E’O(K)Sh) is a finite Ro-module.

Proof. This follows from the equality H(K,DL)<, = HY(K,D5")<p, and
the fact that D5™° is bounded in DS, 0

Now we consider the behavior of HO(K,Ds"°)[¢]<x under change of coef-

ficients. Let kg : To/Z(K) — R* be a weight. If f : R — R’ is a ho-
momorphism of pseudoaffinoid algebras, we let kp/ denote the composition
To/Z(K) LIy RNy By [JN16l Corollary A.14], f is topologically of
finite type, so we have a surjection R (Xy,...,X,) - R'. If R is equipped
with a norm adapted to kg and Ry C R is the corresponding ring of defi-

nition, with u € Ry a pseudouniformizer, we define R{, := Ry (X1,...,X})
and u' := f(u).
Let a := |u|g. We define a norm |-|g on R’ via
7| pr i=inf{a™™ | v € W/" Ry}
Then Rf is the unit ball of R’ with respect to |-|p, and |u'|pr = |ulg.

Moreover, if |-|g is adapted to kg, then |-|r/ is adapted to Kp.

Lemma 4.2.3. With notation as above, suppose that f : Ry — Ry is a
finite map. Then the natural map Ry, ®Ro D,f;’o — D,f;}o is a topological iso-
morphism (with respect to the u'-adic topology), where the completed tensor
product is taken with respect to the u-adic topology on D,f;’o and the u'-adic
topology on Ry,.

Proof. We first check that the morphism Rf, ® Ro D,f,;""’ — Dy ;}O is an isomor-
phism of Rj-modules. The discussion after [JN16, Proposition 3.2.7| shows
that
DEIZ,O o H RO . u—nR(r,u,a)na
(0%

{ |aflog, r
logp‘u‘R
finite set‘depending only on the group-theoretic data we fixed at the begin-

ning of §3), and « is a multi-index (and similarly for D,f;}o). Now Ry is a

finitely presented Rp-module, and for any finitely presented Rp-module M,

where ng(r,u,a) = J, n is a certain (non-canonical but explicit)
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the natural morphism M ®g, [, Ro-u "#"w®)b® — ] M -y "rua)pe
is an isomorphism. By construction, ng(r,u,«) = ng/(r,u’, ) for all a, so
the claim follows.

Finally, the morphism R{®p, Dry° — Dryy is clearly continuous, so the
open mapping theorem implies that it is a topological isomorphism. O

Corollary 4.2.4. With notation as above, suppose that f : Ry — Ry is a
finite map. If Fy; has a slope < h-factorization, then the natural map

Ry @R, Syl e (K)<n =SS0 (K)<n

HRaf KRR/ 75

18 surjective.

Proof. Writing D*\(Af s ®p D)*/K = [[,c; D*g;K for some finite set of
elements g; € (A s ®r D), we have an isomorphism

N o\ (KAY (Ng: ' D> g;)/F*
HO(K, Do) €] & ier (D) AR 7o)

For every map R — R’ as above, Lemma implies that the base change
map
Ry ® &D5° = @iD5y
0

/iR/
is an isomorphism. Moreover, the calculations of [Tay06, Lemma 1.1| show
that the order of (KA;,f N gi_lDXgi)/FX is prime to p for all 7, so the base
change map R) ®g, H*(K, Diy°)€] — HO(K, Dy;°)[€] is an isomorphism.

Now we have a commutative diagram

6®R0 HO (Kv /D:};UO) [5] — R ®RHO (K7 D:;) [5] — R QR HO (Ka D:;) [g]ﬁh

[ ! !

H° (K, D5)°) [§] ——— H° (K, DZ;,) [§] ——— H° (K DE,;",) [€]<n

KRt

(where the fact that the right vertical arrow is an isomorphism follows from
Lemma[4.2.1)). This implies first of all that the map R'®@z H° (K, Dyl ) [€] —

H° (K,D<’" ) €] carries R) @p, S<"0(K)<p to S7°(K)<p.

a3:%4 K/R?{ KRt 7{
To prove surjectivity, we may lift f € S;:;?g(K)Sh to an element of Ry, Sr, H° (K, D;}QO) €],
since the left vertical arrow is an isomorphism. Its image in R'® pH° (K , D,f}: ) [€]<n
is therefore an element of R ®p, S:}::E(K)Sh in the pre-image of f. O

We may also extend [Kis09al Lemma 2.1.4] and [Kis09a, Lemma 2.1.7] to
statements about families of integral overconvergent modular forms.

Proposition 4.2.5. Let k : Ty/Z(K) — R* be a weight, and let x : Ag —
R* be a character. For any finite set of primes Q as in § suppose that
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HY(Ko(Q), Zx) and H*(K~(Q), Z,) admit slope-< h-decompositions. Then

the natural map

> )T (St (K (@) <

7,0 _ Aop=
) SIET(@Q)
Ag=x ’
hEAQ

18 an isomorphism.

Here (S:g’O(K*(Q))ql)A is the maximal quotient of SEZ’O(K*(Q))QL
k) - Q:X b -
on which Ag acts by x; if x is the trivial character, this is simply the co-
invariants.

Proof. We first assume that K is neat. Writing D*\(Ap s®prD)*/Ko(Q) =
Uier D> gi Ko(Q), we have a finite disjoint union
HY(K™(Q), D"°)[€] = ®ier heay, DI°

We claim that Ag acts freely on D*\(Ap ;@pD)* /K~ (Q). Butif D*g;h; K~ (Q) =
D*gihjy K~ (Q), then the neatness hypothesis implies that ¢ = ¢’ and
= 7. Hence we have

HY(K™(Q), Ds"°)[¢] = ®ier Ro[Ag] ®r, D5"™°
and we can write

> x(h)7H(hy (H(KE(Q), D™)E]) ey — HY(K™(Q), Dg"°)[g) =X
heAg
and

S7 X))  (HO(K (@), DENIEN o

hEAQ

~

= H(K(Q), D5 )[E]2e ™

If K" < K with K’ neat and [K : K] prime to p, then 37,1 Xx(d) (h)

induces diagrams

(HO(E(Q),D"™)E]) pymy ~——- HOUK(Q), DR"7)[g] 27X
| j
(HOK" (@), DE”’)[&)ZKX — HO(K'™(Q), DE"°)[g]Ae=xK/K
and
(HO(E(Q), DNIE]) p ey ~—-+ HO(E(Q), DF)[E] 207

K'/K

(06" (@), DEME))

AQ:X
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Using [JN16l Proposition 2.2.11], for any level K we obtain an isomorphism
D x(h) TR Ske(K™(Q)<n)ag — Sre(Ko(Q))<n
helAg

Then we have a diagram

0 —— Ing HY(K(Q), D<"9)[g] —— HO(K~(Q), D<"9)[g] —— HO(K~(Q), Dg")[g] =X —

| !

0 —— IngoH(K~(Q). D) ch —— HO(K~(Q), D[] eh —— HO(Ko(Q), D)5~ —

where In, y C Ro[Ag] denotes the ideal generated by the elements (h)—x(h)
for h € Ag. A diagram chase shows that we have the desired isomorphism

> X)) s (STEKT@)<n) S ST KT@)ZT

hEAQ QTX
(|

Now assume that R is a local field with uniformizer w, that is, a finite
extension of Qp or Fy((w)). Then by [AS| Theorem 4.4.2], it is automatic
that H°(K, 2,,) and H°(K, Z;)[£] admit slope-< h-decompositions (and that
F,. and F, ¢ admit slope-< h-factorizations).

Proposition 4.2.6. If R is a local field, with ring of integers Rg and uni-
formizer u € Ry, the module S;g’O(K_ (Q))<n s finite projective over Ro[Ag].

Proof. To check that S;g’O(K_(Q)Sh) is projective over Ro[Ag], we may
replace Ry with a finite extension, so we may assume that Ry contains the
values of all characters x : Ag — R™. If A, has order p™, we can write
Ro[Aq] explicitly (but non-canonically) as Ro[{ }, ]/ ({28 —1); this as-

sumption implies that the polynomials -1 split completely, and the
ideals Ia,,y introduced above are the non-maximal prime ideals of Ro[Ag)].

On the other hand, we have a family of surjections
— o — o Ag=
HY(K™(Q), D) E)en — HO(K™(Q). DF™)[e] <~

The target is a lattice in H*(K~(Q), D,f")[f]é,?zx; since Ry is a discrete val-

uation ring, H*(K~(Q), D5"™°) [f]é,?zx is free of some rank d,. Since Ry[Ag]

is a local ring, H(K~(Q), D5"°)[¢]<n can be generated by d, elements as
a Ro[Ag]|-module.

Furthermore, Ro[Agla,=y = Ro. Since HO(K_(Q),DST’O)K]?}?:X cannot
be generated as an Rp-module by fewer than d,, elements, this implies that
the ranks d, agree for all characters x; call this number d.
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We therefore have a presentation of SSE’O(K_(Q)Sh):
Ro[Aq)®" = Ro[Aq)® — STE°(K™(Q)<h) = 0

Since the surjection Ro[Ag]®? — S;go(K_(Q)Sh) is an isomorphism mod-

ulo each Ia, y, the image of Ry [Ag]®? in Ry[Ag]®? is contained in Ing xRo [Ag]®.
In particular, if d’ # 0, then the Fitting ideals of S;E’O(K*(Q)Sh) are con-
tained in M lagx-

On the other hand, the module H°(K ~(Q), Ds")[€] is potentially orthonor-
malizable as an R[Ag]-module, so by [JN16, Theorem 2.2.2] HO(K ~(Q), D7) [¢]<n
is a finite projective R[Ag|-module. In particular, for each prime p C R[Ag],

there is some integer d, < d such that Fitty (S, (K (Q))<np) = 0for k < d,

and Fitty(Sk.e(K™(Q))<nyp) = R[AQ]p for k > d,. But the formation of Fit-

ting ideals is functorial in the coeflicients, and Ny Ia, , does not generate

the unit ideal in R[Ag), so d’ = 0 and SEE’O(K_(Q)gh) is free of rank d over
Ro[Ag]. O

We may consider characteristic polynomials of operators on Sy ¢(K~(Q))<n,
viewed as either a rank-d projective R[Ag]-module, or as a rank-d|Ag] pro-
jective R-module. In particular, we have seen that if h = a/b, the R-linear
characteristic polynomial of uaU;f has coefficients in R°. Using properties
of circulant matrices, we see that the R[Ag]-linear characteristic polynomial
of uU_P has coefficients in R°[Ag)].

Corollary 4.2.7. Let notation be as above, and let d denote the rank of
Sie(Ko(Q))<n. Suppose that R is reduced and Ry = R°. Then the natural
map

> ne(K7(Q))<n) 5, = 526 (Ko(Q))<n

helAg
is surjective, and its kernel is annhilated by u(d—1e.

Proof. Since u®UZP is power-bounded for all v | p on both S, ¢(Ko(Q))<n
and Sy ¢(K~(Q))<n, by assumption, and Ug, commutes with the diamond
operators, surjectivity follows.

To study the kernel of ZheAQ (h), we first observe that for f € S (K™ (Q))<n,

Ug(d_l)(f) € S;?o(K_(Q))Sh. Suppose f € S (K™ (Q))<n is in the
kernel of ZheAQ (h). Since U, commutes with the diamond operators,
(u*U,*)?=1(f) is also in the kernel of ZheAQ (h), and by Proposition W
it actually lives in Ia, S5 7 (K™ (Q))<p. But then

ul® Ve f = (U, ) UNI(f) € Tng Sy (K (Q))<n
as desired. -
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Proposition 4.2.8. Suppose that k is an open weight such that Spa R con-
tains a Zariski-dense set of classical weights, and suppose that F,, admits a
slope < h-factorization. Let A,, B, € ng’o be lifts of aw, By, Tespectively.
Then the map

[ We, = Bo) - S50°(K)<hm = Sie®(Ko(Q))<hme.
vEQ

is an isomorphism (where we view SEE’O(K)gh,m as a submodule of S:g’O(KO(Q))Sh’m).

Proof. We may assume @ = {v}, by induction on the size of Q). Then the
source and the target are finite Rp-modules. After inverting wu, [Kis09al,
Lemma 2.1.7| implies that the map is an isomorphism when specialized
to any sufficiently large classical weight. It follows that S, ¢(K)<pm and
Ske(Ko(Q))<hmg,, have the same rank over R. We claim that it suffices to
check that Uy, — B, is surjective after specializing at every maximal ideal
of Ry. Indeed, this implies that

Uwv — B, : Sn,g(K)gh,m — Sn,é(KO(Q))Sh,mQ,O
is a surjection of projective R-modules of the same rank, so it is injective.

Then the kernel of U, — B, on S;Z’O(K)Sh,m is u-torsion. But S:g’o (K)<hm
has no u-torsion, by definition, so the kernel is trivial.

Thus, we need to check that
Us, — Bo: F' @y S52°(K) <tim — F 01y S22 (Ko(Q)) <t

is surjective for any specialization Ry — F’ at a maximal ideal. There is some
maximal point € Spa R with residue field R, and ring of integers R, ¢ such
that Ry — F’ factors through Ry — Ry, and by Corollary the maps

Ry 0®Ry Sy (K)<hm = S5 (K) <m and Ry 0@y Sy ¢ (Ko(Q))<hmo.q —
S;Tf(KO(Q))Sth’O are surjective. It therefore suffices to prove that

Us, = By : F' @r, o ST (K)<nm = F @n, o S5 (Ko(Q))<hmg o

Kz,
is surjective. But this is a map of vector spaces of the same dimension, so it
is enough to prove injectivity.

The module F' ®p, S:;’éo (K)<hm is a finite module over the artin local ring
Tw/m, so if the kernel of U, — B, is non-trivial, it contains f # 0 which is

m-torsion. In particular, T,(f) = (o + By)z and Ug, (f) = .

Since

[Ko(v) (M =,) Ko@) = [ (e, w, ) Ko()
Olek'v
where & denotes a lift of «, we have

Usf = Y (L )

ack(v) NYEv T
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But (aw wv):(lwv)(él)and( )|f f,smceflsﬁxedby( )6
GL2(OF,) by assumption, so
Un, f = |7~€(U)|<1w )|f= (' )If

Similarly, we have

[GLa(Or,) (* &,) GLa(Op,)] = (7 1) GLa(0r,) | | ] (% =) GL2(0R,)
a€ky
SO
Lof = (=0 HIf + > (L )lf
ack(v) N Y

Now for any a € k(v),

GV = (@) a) =2

(= 1)‘f = (T, = Ug,)(f) = o f

SO

But

R O TG O L (P L
since f is fixed by (!, ) € GL2(Or,), so o, = B,, which contradicts our
assumption. [l

Corollary 4.2.9. With notation as above, the map

H (U, — By) : sz,g(K)Sh,m - SZ,&(KO(Q))Sh,mQ,o
vEQR
18 an isomorphism.

4.3. Varying the level. We record some results on the existence of slope
decompositions as we vary the tame level. Fix a set of places @) as above,
and fix a maximal ideal m C T which corresponds to the residual Hecke
eigenvalues at some maximal point of Z7x. There is a corresponding Galois
representation p,, : Galp — GLg(F) for some finite field F; it is unramified
at all places of @ and the characteristic polynomial of p,,(Frob,) is X? —
T,X +Nm(v)S, for all v € Q. After replacing F with a quadratic extension
if necessary, we may assume that each such characteristic polynomial has
roots {c, B,} in F; we assume that a,8; ' ¢ {1, Nm(v)*}.

Let £/Q, be a finite extension with ring of integers ', uniformizer 7, and
residue field containing F, and replace the Hecke algebras T and Tq ¢ with
Op ®z, T and O ®¢,, T, respectively. Similarly, replace the coefficient
module Z,; with its base-change to O, so that the Hecke algebras continue
to act (the upshot is that we also base-change the resulting eigenvarieties
from Z, to OF, but we suppress this from the notation). Fix a root a, € F
of each characteristic polynomial, and fix a lift A, € O of each «,. Then
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we define mg o C Tgo to be the maximal ideal generated by m NTg o and
Uy, — Ay for all v € Q.

Lemma 4.3.1. Fiz a central character € : A;ﬂf/F>< — O(Wr)*. Then there

%K,TQ,O ~ %KQ(OLTQ,O

D* £ DX Empy compatible with the respective

is an isomorphism
morphisms to Wp.

Proof. Let S (K)<pm := Tu®1Sk(K)<p, and similarly for S, (Kq(0))<hmq.o-
By [Kis09al, Lemma 2.1.7|, for any slope h and any sufficiently large classical
weight &, we have an isomorphism of T g-modules

SN(K)Sh,m — Sk (KQ (0))Sh,mQ,o

. . . . KT Ko(0),T
By construction, classical points are dense in 2., “° and % XQ( ) @0 50
D*.gm D> &mq o

we may use |[JN19al, Theorem 3.2.1| to construct morphisms of gigenvarieties

Kp(0),T K,T
Q() Q.0 N Q.0

D*.£mq,0 D*.&m
and
Ll im = Zp emag
These morphisms are mutually inverse, so they are isomorphisms. ([

Corollary 4.3.2. Fiz a central character § : AIX,f/FX — O(Wr)*. Let
U = Spa R C #F be a connected affinoid open, corresponding to a weight k,
and fix h € Qsg. Then (U,h) is a slope datum for %gx em if and only if it

%KO(Q)

is a slope datum for D £moo”

Proof. We write h = m/n and consider the closed ball By, = {|T"] <
lu=™} € AL, If 2 and 27 denote the spectral varieties for 2% and

D*.&m
Ko(Q)
D> {mg o’
We need to show that Zi;, — U is finite with constant degree if and only if
Zi — U is.

respectively, we set Zyp := Z N Byy and Zp;, == 27" N Byy,.

Since the morphisms 2 — #% and 2 — #r are flat and we have assumed
U is connected, it is enough to prove that Zy;, — U is finite if and only if
Z{]’h — U is. To see this, it is enough to show the same statement about the

morphisms Z[r]e%, Z;f;d — U on the underlying reduced subspaces.
Setting T := O, we have

red __ K,T
2= ‘%QX £m
and Ko(Q),T
/red __ 0 )
g o %’QX 7€7m

Then as in Lemma |4.3.1 we have an isomorphism 2 ;(X’T - Z KXO(Q)’T
&m D> ¢ m

compatible with the respective morphisms to #%, and the result follows. [J
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We may also compare slope data for %;(Xo(@) and 3&”;{;(@):

Lemma 4.3.3. Fiz a central character & : Alfﬂf/FX — OW)*. Let U =
SpaR C #F be an affinoid open, corresponding to a weight k, and fix h €
Qs0. Then (U,h) is a slope datum for %KO(Q if and only if it is a slope

datum for %QIZ(Q).

Proof. Let 2 and 2’ be the spectral varieties for ﬂé” ( ) and %D (@ )
respectively, and let x € U be a maximal point. Then by Propos1t10n

the module HY(K~(Q), %x,)[{]<n is finite projective over k;[Ag], and the
natural map HY(K™(Q), Zx,)[€l<nn, = H(Ko(Q), Zx,)<n is an isomor-
phism. It follows that the fiber of 2 over x is finite of order d if and only
if the fiber of 2" over x is finite of order d|Ag|. Since spectral varieties are
flat over weight space, the result follows from Theorem [3.1.2] O

5. PATCHING AND MODULARITY

5.1. Set-up. Let us recall our goal. Assume p > 5. Fix a non-archimedean
local field L with ring of integers 07, residue field F,, and uniformizer w.
Fix a continuous odd representation p : Galg — GL2(F,), such that:

p is modular
° ﬁ’GaIQ( ) is absolutely irreducible

The image of p contains SLa(F))
p is unramified at all places away from p

PAX® (Y‘:y“ I) for any character x : Galg — F.

The assumption that p has large image is stronger than the typical hypoth-
esis. This is because we need to use [BH17, Theorem B.0.1] to ensure that
we can work with middle-degree eigenvarieties for Hilbert modular forms.

We wish to prove the following modularity theorem:

Theorem 5.1.1. Suppose p : Galqg — GL2(01) is a continuous odd repre-
sentation unramified away from p and trianguline at p with reqular parame-
ters, whose reduction modulo u is as above. Then p is the twist of a Galois
representation arising from an overconvergent modular form.

The predicted weight x can be read off from the parameters of the triangu-
lation, as can the predicted slope h.

More precisely, we will show that p corresponds to a class in Sy (K)<p, where
K =1 -Ki(N) =1 Tl;zpun GL2(Q¢) - Iy K1(€) for some N > 5 prime
to p. To do this, we will consider an open weight k : Ty — O(U)*, where
U C W contains a point corresponding to x and (U, h) is a slope datum, and
we will study the spaces S, (K~ (Q))<p for varying sets of primes Q.



MODULARITY OF TRIANGULINE GALOIS REPRESENTATIONS 51

5.2. Patched eigenvarieties. In this section, we construct local pieces of
patched quaternionic eigenvarieties, using the language of ultrafilters of [Schi18|
§9]. We fix a totally real field F' split at all places above p and a totally defi-
nite quaternion algebra D over F', which is ramified at all infinite places and
split at all finite places. We also fix the tame level K? := GLQ(A%7f). We
further assume that F'/Q is abelian, so that Leopoldt’s conjecture is known
to hold. Unlike [Sch18], we do not assume that F' has a unique prime above
p; we let ¥, := {v | p}. We expect these hypotheses can be relaxed consider-
ably, but this is not necessary for our applications. Fix some finite extension
E/Q, with residue field containing F,,.

Recall that there are Galois deformation rings R, =, and Ry, parametriz-

ing deformations of p unramified outside of 3, Where RE additionally parametrizes
framings of the deformations at places of ¥,. There is also a local framed
@Uegp RL:' where RD parametrizes framed defor-

0
—>Rﬁ.

deformation ring R- Filoc =

mations of p\GalF , and there is a natural map Rp loc

We define a distinguished family of characters nuniv : Galp — Z,[To/Z (K)]*
over integral weight space. We have a universal weight A = (A1, A2), where
each \; is a character [[ 5. Or — Zp[To/Z(K)]*, and we define 7, : Op, =

ZX — Z,[To/Z(K)]* via n(z) = (Al’ﬁxv ))\g\ﬁx (m))_l. Then because

we have assumed that Leopoldt’s conjecture holds for F', we see that n,
is independent of v € ¥; global class field theory gives us a corresponding
character Galq — Zp[Ty/Z(K)]*, which we restrict to Galp to obtain nypiy-

We fix an unramified continuous character g : Galp — Og[Ty/Z(K)]* such
that the reduction 1), modulo the maximal ideal satisfies det p = wonuvacylca

and we set 1 := Yonuniv and ¢’ = ¢077un1vchc~ Then we constructed quo-
tients

Op[Ty/Z(K)] & RS zp — Ry
ﬁE [[TO/ (K)]] p loc R%],i:fc
0plTo/Z(K)] & Ry s, — R%},lzp

parametrizing families of deformations with fixed determinants.

We also define families of weights &, over #r via
Ky = (/{vl 5 /{v,2) = ()\2|ﬁx 7)‘1 ‘ﬁx chc)

In order to find sets of Taylor—Wiles primes, we impose the following standard
hypotheses:

(1) p=5
(2) Plr(,) is absolutely irreducible
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(3) If p =5 and p has projective image PGL2(F'5), the kernel of p does
not fix F((5)

Then we have the following relative version of [Kis09a, Proposition 2.2.4]
(since we assumed p splits completely in F, [F: Q] = |X,|):

Proposition 5.2.1. Let g := dimp, H'(Galpy,,ad"p(1)) — 1. Then for
each positive integer n, there exists a finite set Qp of places of F, disjoint
from X, of cardinality g + 1, such that

(1) for all v € Qn, Nm(v) = 1 (mod p"™), and p(Froby) has distinct
ergenvalues
(2) the global relative Galois deformation ring RgngQn parametrizing

families of deformations with determinant ¢ unramified outside ¥, U

n can ve topologically generatea as an ’l-age ra by g elements.
be topologicall ted RZ3%.-algebra by g element

Proof. This follows from Lemma/2.1.1} as in [Kis09b, Proposition 3.2.5|. O

We fix such a set @, for each n > 1, as well as a non-principal ultrafilter
§ on {n > 1} (more precisely, on its power set, ordered by inclusion). For
notational convenience, we set Qo := (), and we let @, := Q, UX,. For each
n, we again let K~ (Qn) C Ko(Qn) C G(AL ;) = GLy(AL ;) be the compact
open subgroups

K= (Qn):= [[ GL2(0r,) x [ K (v)c [] GL2(OR,) x [] Ko(v)
veQn VEQn vEQn VEQn

Let £ : Alfﬁf/FX — O(#r)* be the central character corresponding to ¢ via
class field theory.

K™ (Qn)

Now we analyze the eigenvarieties 2, . Let k be a weight valued in a

reduced pseudoaffinoid Z,-algebra R, and write U := Spa R. Assume that
the Fredholm determinant corresponding to HY(K, Z,)[¢] admits a slope-
< h-factorization for some slope h = a/b (where a,b are relatively prime
non-negative integers); by Corollary and Lemma the Fredholm
determinants corresponding to H°(Ko(Qn), Zx)[¢] and H (K~ (Qy), Z)[€]
also admit slope-< h-factorizations. We also assume that R can be equipped
with a norm adapted to x such that the corresponding unit ball is the ring
of definition Ry = R°; this is possible, for example, if U is an affinoid open
or a maximal point in #f, by Lemma [£.1.2] Then we fix some r > 7.

The modularity of the residual representation p means that p corresponds
to a maximal ideal m C T. For each v € @,, we fix a root «, of the
characteristic polynomial X? — T, X + Nm(v)S, of p(Froby) (increasing F,
and hence E, if necessary), and we consider the corresponding maximal ideal
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mg, C Tén (as in § Then we have a collection of diagrams

O x 2 (&) —— [1,SpaRpq,us,

[

ﬁEXWF

The pre-image wt~1(U) in the slope-< h part of the eigenvariety has the

form Spa (’]I‘Kf(Qn) k£, <hs L (@), <h), and since 2%, (@n)

is reduced
o QX 7&7 Qn ’
TS -

(Qn)uitih © T~ (Qn)r.e,<n 18 a ring of definition.

For each n, the module of overconvergent modular forms Sy ¢(K~(Qn))<n
is a Tg—(Q,)xe,<n-module, and it is projective as an R-module; let d be its

rank over R. The Ty” CEQn) ¢ <p-Submodule S<T’°( ~(Qn))<n is a lattice in

Sie (K™ (Qn))<n- Recall from Definition [4.1.3| that there is a second lattice
S (K™ (Qu))<n i= z > @ U (S5E (K™ (@Qu))<n)

p 7,>0
which is stable under the operators u U ’, as well.

Let }L’Q, | denote the localization Ry ® OuTo /70 Q’ ; the formal scheme

Z(K)]
Spf RrRY 5.0, |y is an integral model for the pseudorigid space U x Spa& 5.0

Similarly, we will write Rtr; 3, ’52, < p|u for the localization Rg ® O[T/ Z(R)] RtDriz% ’5, <n

and Rgfi) loc, <h’U for the localization Ry ® OulTo/Z(R] Rtljrf%’ﬁc <h- Using the

1sa]i

existence of Galois representations, we see that T¢ 5.Q!, lu-

algebra.
By Lemma [4.2.6{ S5 ¢ (K~ (Qn)) <hmg, 18 a finite Ro[Ag, |-module, with

K= (Qn)k.&,<h

RO ®R0[AQ } S<To( _(Qn))§h7mén = S;QO(KO(QTZ))Sh,mO’Qn
Since the augmentation ideal Ia, is contained in the Jacobson radical of
Ry[Ag, ], this implies that S;g’o(Ko(Qn))gh,monn and S;g’O(K_(Qn))gh,mé

can be generated by the same number of elements (over Ry and Ry[Ag,],
respectively).

Similarly, Sg (K~ (Qn)) <, mg, is a finite Ro[Ag,|-module. Since S}, (K *(Qn))ghmz)n
is generated by d>»| translates of S<r°( (Q"))Shmén’ we see that the

number of generators of S (K (Qn))gh,mén over Ry[Ag,] is bounded in-
dependently of n.

Set j =4|¥X,| — 1 and k = |Q,| = g + 1. Using local-global compatibility at

places in Q,,, there is a homomorphism Ry ® Zplyr, ... yk] — R%’:Q% |y such



54 R. BELLOVIN

that the action of Ry ® Zplyr, ..., yx] on S7 g(K_(Qn))ih o s compatible
’ =7 Qn
with the action of Ryg[Ag,] via a fixed surjection Ry ® Zylyr,. .. uk] —
Ro[Aq,]-
We observe that we may view Sy ¢ (K™ (Qn)) <, mg 82 module over Spa R[Ag] x

Cu,n, where Cyp, is the annulus of radius h, by letting the coordinate on Cy,
act as U, . 1

Now we consider local-global compatibility at places in X,. Recall that
the actions of u®UY and uU_b on S, ¢(K~(Qn))<n are power-bounded
for all v | p. Thus, we can make S n (K7 (Qn)) <y, mg into a module over

R@QQJU <phT1 e h’f|§1|> by letting T; act as Uigvli. But local-global
compatibility tells that over the analytic locus, Sy ¢(K~(Qn)) is supported

on the trianguline locus, so S (K*(Qn))ghmé is actually a Rtr1 ., <nlo-
module, where the coordinates of G,? act as Uslk.

Since R%ﬁlc% — R‘; g; is formally smooth of dimension j, we may construct
a homomorphism
Ro®Zp[Yt,- -y Yks Yktds - - - s Ykrj] — Rm 2.0, <hlU
compatible with
Ro®Zylyr, .., uk] = oy v
such that yiy1,...,yr4; are the framing variables. Finally, we fix a surjection

O / O / ~
Rﬂ’lfc[[xl,...,xg]] — pagh and amap Ry ® Zp[y1, ..., Yk+5] = ]iloc[xl,...,xg]]

such that the corresponding diagram

> D7 ,77
RO & Zp[[yl, R ,yk+j]:| E— Rtrifpﬁ,lzc,gh[[xl’ - ,$9]HU

\ |

RN
Rtri,ﬁ,Q;,§h|U

commutes.
Now we can patch. We add framing variables by setting
M:" = Zpyria, - - - 73/k+]]] S<TO( Ko, )<n, mg,
and
My = Zp[yk+1s - - - s Ykt ® Se ,£< Qn)<th

so that
< ~ <7‘ o
RO ®R0®Zpﬂy1’ )yk+]]] M " S (K)ShJTI
for all n > 1, and

Ro ®RO®Zp|Iy1:"~7yk+j]] My, — Szjg(K)gh,m
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for all n > 1.

For any open ideal I C Ry ® Z,[y;], we define
M7 := Ro® Zy[yi] /1 BT,sy Ro® Zplyil/1 [12/1

and

My = RO®ZpHyiH/I ®Hn21Ro®Zp|Iyi]]/I HM”/I

Here the homomorphism [, ~, Ro ® Zp[y:]/T — Ro & Zp[y;]/I is the local-
ization map coming from our choice of non-principal ultrafilter.

Passing to the inverse limit, we obtain the patched modules
MZ" = lim M7
I

and

M :zl'&lMI
1

Similarly, we may define patched global deformation rings Rm F00,<h, sl and

Hecke algebras T< w<ny and TS o ; via

D’w pAS
Riigiecnilo = Ro®Zolyil /T @11 ka7, 1 H o <nlu/T

<r,0 <r,0
Tecns = Ro® Lyl T O rysz, i H Tr= (@uymzn/ T

Szt = Ro @ Zylyl /T Oy pyaz,tan H Th-(@uym.<n/ 1

: Dwv . 3 <7"O — <r
Settlng Rtr1poo<h’U = £_] tr1p<x><h I‘U’ P]I‘<>01-£<h - M[Toon<h1’ and

T2, h<h @1 . TS, <h > We have a sequence of homomorphlsms
Ry ® Zp[[yl]] - Rtrl P> loc <h[[xl]]|U - Rtrl 0,00, <h‘U - T

compatible with their actions on M,

Note that for each open ideal I, we have a surjection

0,4k ) D RIS
Rtri,ﬁ,loc,gh[[xz]] |U/I - trl,p,oo <h, I‘U
Hence we have a surjection

D’w/’f Dﬂp,?f
Rtri,ﬁ,l’Zc,Shﬂwi]”U - Rtri,ﬁ,cfo,gh‘U

and a closed immersion

0,9,k Ok
Xtrl 0,00, <h‘U - (Spa Rtrl 0,00 <h’U) - Xtri,ﬁ,lgc,gh[[mi]] |U

~ pOY .k
Furthermore, since Rme, <nlu/(yi) = Ryis5, <plu for all n, we see that

09"k ~ pOY K
tri,p,00, <h‘U/(y1) = Rtri,ﬁzp,gh‘U'
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Lemma 5.2.2. The patched modules MS" and M, are finite over Ry @ Zyp[ys].-
In particular, they are complete.

Proof. The powers of the ideal (u, y1, ..., yk+;) are cofinal in the set of open
ideals of Ry ® Z,[y:], and for any open ideals I C I’ C Ry ® Zy[y;], the natu-
ral maps M;"/I' — My and My /I' — My are isomorphisms. Then [StalS8]
Tag 09B8| implies that M and My, are complete and Mg /I = M and
Moo /I =2 M for all open ideals I C Ry ® Zy[yi].

We have

= v () </ u

which is Ro-finite. Since the number of generators of M, /(u,y1,.. ., Yr+j)
over Ry is bounded independently of n, My /(u,y1,...,Yry;) is Ro-finite.
Hence by [Mat89, Theorem 8.4], MS" and My, are Ry ® Z,[y;]-finite. O

Proposition 5.2.3. If R = L is a field with ring of integers Oy, then ML"
is a finite projective OL[y1, ..., Yk+;]-module.

M) = M,

Proof. We claim it is enough to show that for any open ideal I, M~"/1 is a
free 01 [yi]/I-module of rank d for all n > 0. Indeed, because our ultrafilter
is non-principal, this implies that M;" is also a free 0p[y;]/I-module of
rank d (since the localization ], <, Or[yi]/I — OL[yi]/I factors through
the localization [],~, Or[y]/1 —>_Hn>n0 O1lyi]/I for any ng > 1). Since
Mg s (u,y1, - .,y;ﬂ-)—adically separated, [Mat89, Theorem 22.3] implies
that M is flat over & [y;], and hence projective.

By Proposition SEZ’O(K*(Qn))Sh is a projective Ry[Ag,]-module of
rank d for all n. Then for n > 0 (depending on I), M7 /I is free over O,y
of rank d, so we are done. O

The modules MZ" and M, behave well under finite base change, in partic-
ular, under passage to closed subspaces of U:

Lemma 5.2.4. Let f : Ry — R{, be a finite morphism, where R}, is a
noetherian ring of definition in a pseudoaffinoid algebra. Let k' be the weight
fok, and let M(;OQ’ denote the patched module constructed from the modules
of modular forms S;Téo(Kén)ghmén. Then the natural maps

Ry ® Zy[yi] ©py 57, 1yg Moo = MK
and
Ry ® Zplyi] @, 5 7,y Mo = Mis
are surjections.

Proof. We treat the first map; the second is similar. Let M), := Zy[yx11, . . ., yr+5]®z,
S;T‘éo([(én)ghmén. The open ideals I C Ry ® Z,[y;] generate open ideals of
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’0(}5 Z,[y;] and are cofinal, so it suffices to show that we have a surjection

Ro @ Zplyil /1€, & 7,1y 1M1 = Mp 1= (Ro® Zplyil /1) @py oy &z, |1 Ma/T

n>1

The left side is isomorphic to R ®g, M; (because Ro® Z,[y;:]/I is dis-

crete, by construction). Since each map Rj, ®g, M, — M), is surjective
. " k+1 k

(by Lemma and since the transition maps [[,° M, — [[,_; My, are

surjective, the Mittag-Leffler condition implies that the natural map

R6 @Ry M —>M}

is surjective. ([

We have contructed two coherent Ry & Z,[y;]-modules, ME" and My; Mo

is naturally a ROV

ri. 5.0, < [U-moOdule, but MZ" is projective when U is a point,

making its support over Ry ® Z,[yi] easier to analyze.

We now pass to the loci of the corresponding map

D? ,77 =
Spa Rtrifpﬁ,lzc,gh[[xi]] lu — Spa Ro ® Zp[y]

where u # 0, and we consider the analytification M3 of M, as a coherent

045
sheaf over X 2510 _plu x SpaZy[z].

Lemma 5.2.5. The support of M3 is a Zariski-closed subspace of dimension

~ 1
dim Spa Ry ® Zy,[y:] [u} =dimU+(g+1)+(4|Z,| 1) = dimU + g+ 4|%,|

Proof. If x : R — L is a maximal point, and Oy, is the ring of integers of
L, it suffices to show that 01 ®p, My is supported on all of Spec 07 [y;].
We set ' := 2 0k and we let M/’ <" and M be the patched modules con-
structed from the modules S;T&O(K*(Qn))gh,mén and S, (K~ (Qn))

respectively. Since the natural map

<hmg,’

ﬁL ®R0 My — M(;O

is surjective, it suffices to show that M/ is supported on all of Spec O [y;].
To see this, we consider the natural morphism M. <" — M/_.

We will show that M/ <" — M!_ is an isomorphism over a dense open
subspace of Spec O [y;]. Let P, be the cokernel of M/,~" — M and let P
be the cokernel of M/ <" — M. Since the cokernel of

<r, — o —
SR,EO(K (Qn))gh,mén - Sn,g(K (Qn))ﬁhvmén
is finite and u-power-torsion, P, is also u-power-torsion.

There is some integer kg > 0 such that
ukOS,z/,g(KO(Qn))Shvmo,Qn - S;T&}O(KO(Q”))Sh,mO,Qn



58 R. BELLOVIN
and by Corollary the kernel of

(20 @) cnmg, ), = S2elFo(@)) <tumo,

is annhilated by w(®=1% Hence there is some N > 0 such that uNP, C
(y;) Py, for all n, and by devissage, the modules P,/(y;)*P, are annhilated
by u*V for all k,n > 0.

Next, we observe that we have exact sequences
0= M /(yi)* — Mu/(y:)* = Pu/ ()" — 0

for all n. Indeed, there are surjections
oLy r
Tor{ (@l (i), Pu) = ker (M7 /()" = Mo/ (1))

But M," is projective over & [y1], so M,="/(y;)* has no u-torsion, whereas
ToriﬁL [[yi]](ﬁ rlvil/(vi)*, P,) is entirely u-power-torsion, because P, is.

Let J, C Og[y:] be the ideal generated by u™* and (y;)¥. Then the Tor long
exact sequence gives us exact sequences

Tor /e Wi/ )" (Pn/(yi)k, ﬁL[[yi]]/Jk) S ML) = ML) T — Po)Js — 0
Moreover,

Tor{ BVW (P (k. 00yl /Je) = (Pu/ (9)) "] = Po = P/ Ji

Let Pj, denote the localization of [ [, ~, P,/Ji at the ideal corresponding to
our chosen ultrafilter. We have an exact sequence

Py, = My~ = M) — P; —0

and since the set {Ji} is cofinal in the set of open ideals of & [y;], an exact
sequence
PoM. "M —P—0

But since u’VP C (y;)P, P is supported on a proper closed subscheme of
Spf 01 [y:]; away from the support of P, the map M/ <" — M/  is an
isomorphism, as desired. O
The support of M2 over XE{%%Q <nlu X SpaZp[z;] is a Zariski-closed sub-
space, whose dimension must therefore be

~ 1
dim Spa Ry ® Z,[y] [] =dimU + g + 4|%,|

u

4 D7w/7§ 3 3 :
But the morphism X ;> [ — U has relative dimension 4|X,| over an open

subspace of U by Proposition[2.3.5] so any non-empty irreducible components
have total dimension dim U + 4|%,|. It follows that the support of M3} on

RV

wri ploc,<nlU X SpaZp[z;] is the union of irreducible components.
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Finally, since we have a closed embedding

mRTN

D7¢l77
tri,p,oo,gh|U = X 1Zc,§h|U x Spa Zp[x;]

trivﬁ?
Dﬂ/%ﬁ 3 1
we conclude that the support of M., on Xtri,ﬁ,oo,gh|U is also a union of

irreducible components, which we denote 2 ;’;%ﬂ B

We have a sequence of morphisms

vawlvﬁ

tri,p,00

U — xXove lu x SpaZ,[z;] — GﬁiU x Spa Zy[yi]

tri,p,loc

(where we send the product of the factors of G2¢ in the definition of the

trianguline varieties to the factor of G on the right, corresponding to the
09"k
X

action of U, 1); My is a finite module on trip,00|U Whose pushforward to

G%{U x Spa Zyp[y;] is also finite.

We summarize this discussion:

Theorem 5.2.6. There is a space %S’;’%ih (which we call the patched
eigenvariety over U ), a finite module My, supported on %E‘i’%ﬂh, (which
we call the patched module) and a morphism -

00,1,k WRTY
‘%QX,U,gh — Sanm’mOC?Sh\U X Spa Zp[z;]

whose image is the union of irreducible components.

Since this morphism factors through the global trianguline variety, we also
deduce the following corollary:

Corollary 5.2.7. The support of Moo/(y1,--.,yx) in the trianguline vari-
mR

09",k ~ . . ) .
ety over Xtriﬁméhb/(yl, e Yk) = Xtri,Ep,ﬁ,Sh‘U is a union of irreducible
components.

Remark 5.2.8. We carried out this construction locally, because it is diffi-
cult to study the behavior of MS" and M, under rational localization; we
have not checked that the analytic patched modules M3} form a coherent
sheaf. However, because specialization maps induce surjections on patched
modules, as (U, h) varies over slope data, the supports of patched modules

glue to a global patched eigenvariety 2 on’w’ﬁ.

5.3. Modularity. We are now in a position to prove Theorem We
will say that a Galois representation p is modular if it comes from a point
on the extended eigenvariety.

Proposition 5.3.1. Let F/Q be a real quadratic extension split at p, such
that the image of plga, contains SLa(Fp). Then p : Galg — GLa(L) is
modular if and only if p|gal, is modular.
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Proof. We have the cyclic base-change morphism Zqr,, /Q.cusp = Z2GLy /Fmid
from so if p corresponds to x € Zg1, /Q,cusps then plgal, corresponds
to the image of x in Zqr, /Fmia- To show the other direction, we note that
if p|gal,. 1s associated to ' € ZgL, /F then the corresponding eigenvalues
are fixed by Gal(F/Q). Since we assumed that the image of p|gal, con-
tains SLy(F)), by [BH17, Theorem B.0.1| we may apply Corollary to
conclude that 2’ is in the image of Zqr, /Q,cusp- O

Choose F/Q a real quadratic extension split at p. We may additionally
choose F' such that the image of p|gal, contains SLa(F)), by requiring that
¢ splits in F for £ in some finite set of primes S of Q such that {p(Froby)}ses
generate SLy(F),). Maintaining the notation of the previous section, we let
D/F be a totally definite quaternion algebra, split at all finite places, and

we let R := Og[Ty/Z(K)]. The Jacquet-Langlands correspondence gives us
a morphism of eigenvarieties Zpx — Zqr, /r, so it suffices to show that
p[GalF corresponds to a point on %Qx.

Theorem 5.3.2. p|gal, corresponds to a point on %Qx.

Remark 5.3.3. There is some h € Qx> such that p\Gava is trianguline
with parameter of slope-< h for each v | p, and there is some open affinoid
U C #F containing the weight of p|gal,, such that (U,h) is a slope datum
for Zx. In the following proof, we will work with a patched eigenvariety
RIS
tri,p,00,<
close to the boundary, we are always free to shrink U (or increase h). For
compactness of exposition and notation, we therefore suppress (U, h) from

the proof.

,lu. However, since our arguments only require working sufficiently

Proof. Let po := p|Gal,- We have assumed that p\Galqp is trianguline, so we
may write Diig(p|Galg,) as an extension of rank-1 (¢, I')-modules:

0 = ALnig(01) = Drig(plcalg,) = ALaig(d2) = 0

for characters 41,02 : Q; = L*. After twisting, we may assume that
51|Z§ is trivial. We fix a weight kg according to 51‘Z§ and 52|Z§’ and
we fix an unramified character ¢ : Galp — Og[To/Z(K)]* deforming
Xeyeko,1k0,2 det plGaly-

It is enough to show that the point zg € XE{?%/O’E

the support of the patched module M,. To see this, we treat separately the
cases when p is ordinary or non-ordinary at p.

corresponding to pg is in

We first assume that p is ordinary at p. Then po|gal,, has the form
0 = X1, — polcalp, — X20 — 0

for each v | p, where x;, : Galp, = 0 E are characters.



MODULARITY OF TRIANGULINE GALOIS REPRESENTATIONS 61

We wish to consider the slope-0 trianguline variety, which is the same as con-
sidering ordinary deformations of these extensions (with determinant fixed).
The characters Xi7v|ﬁFU deform over weight space, and the unramified char-
acters specified by x1.(p) correspond to a point on Spf Og[{t,},,]. Note
that since we specify a determinant at every point of weight space, deforming
X1,0(p) also uniquely deforms xa ,(p).

Thus, we see that the space

Spt O [[TO/ (K)7 {tv}v|p]]

is the moduli space of pairs of characters. Moreover, away from a Zariski-
closed subspace of this space, the space of extensions of the universal char-
acters is a rank-1 vector bundle. In particular, since kg is regular, over
an open neighborhood of kg in #f, this moduli space is irreducible (and
contains the point corresponding to pg). Adding framing variables and pass-
ing from extensions to Galois representations preserve irreducibility of the
moduli space.

Thus, it suffices to show that the ordinary patched module for some charac-
teristic 0 weight x1 sufficiently near the boundary is supported on the fiber of
this moduli space. We choose x; so that it is parallel. But the ordinary part
of the Coleman—Mazur eigencurve is finite flat and surjective over weight
space, so we may choose ordinary overconvergent eigenforms of appropriate
weight and transfer them to D*, where they contribute to the support of
the patchd module, as desired.

We now assume that p is not ordinary at p, so that pg is not ordinary at either

place above p. Since the parameters of Dyig(p) were assumed regular, zg is a

XD71:[J,7E
tri,pg,loc”

levwlvﬁ

tri,pg,loc?
V' C V of xy so that V' contains no ordinary parameters.

smooth point of Therefore, xg is contained in a unique irreducible

component V' of and we can find an open affinoid neighborhood

It follows that py can be analytically deformed to characteristic 0 (as in
1o Dvwlvﬁ
Example [2.3.4). In fact, the morphism Xtri,ﬁmloc
neighborhood of zg; in particular, it is open, and we may assume that the
weights corresponding to the first term in the triangulation remain trivial as

we deform, at both places above p.

— Wr is smooth in a

Recall that for any p-adic field K/Q,, given a character § : K* — Q; , its
weight (Wt (0)),.rc g 1s the tuple such that
: 13

lim 0(1+a) =1+ wts(d)o(a)]

=0
a—0 ]a\

We say that § is locally algebraic of weight (ky)o if Wty (d) = k, € Z for
all o; equivalently, the restriction of § to some open subgroup of O is
Xk =z = [[, o(z) ko, If § is the parameter of a trianguline (i, I')-module,
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we say that it is locally algebraic of strongly dominant weight if d; , is locally
algebraic of weight (k; ) and kj o < kit1,0, for all ¢ and o.

We claim that there is some locally algebraic strongly dominant x; € W;ig

such that the fiber V8|, is equidimensional of dimension 8. Indeed, since

we chose a deformation of (pg,d) keeping 6| % trivial, it is enough to see
Py

that there are points of Spf Zp[[Z]fﬂrig which are locally algebraic of positive
weight arbitrarily close to the boundary, which follows from the calculations
of e.g. [JN19b, §2.7|. In fact, we can choose k1 to be locally algebraic of
weights {0, 1} at both places above p.

We further claim that we may assume that V'*8|,, consists of points cor-
responding to Galois representations which are potentially Barsotti-Tate
at both places above p. Indeed, 2-dimensional (characteristic 0) (¢,I'q,)-
modules are classified in [Col08| §3.3], and after possibly replacing k1 with
a weight closer to the boundary which is locally algbraic of weights {0, 1},
the corresponding (¢, I'q,)-modules are crystabelline.

Now it suffices to show that the patched module for weight x; is supported
on all of V'"&|, . But a dense open subspace of V'], is a subspace of
the generic fiber of one of the potentially Barsotti—Tate deformation rings
constructed in [Kis09¢|. To see this, we may apply [Kis09b, Theorem 3.4.11|
(with some hypotheses relaxed in [GeeQ6]). O

APPENDIX A. EXTENSIONS OF ZARISKI-CLOSED SUBSETS

The paper [Loul7| proves Riemann extension theorems for functions on nor-
mal pseudorigid spaces and normal excellent formal schemes; in this appen-
dix we use those results to extend certain Zariski-closed adic subsets (in the
sense of [JN19al §2.1]) of pseudorigid spaces over missing subsets of codi-
mension at least 2.

Proposition A.0.1. Let X be a normal excellent formal scheme, which is
nowhere discrete. If Z C X := X" is a Zariski-closed adic subset, then there
is a closed formal subscheme 3 C X such that Z = 3.

Proof of Proposition[A.0.1. We may assume that X = Spf R, where R is a
normal excellent domain with ideal of definition J = (f1,..., fn). Then by
the definitions of [JN19al §2.1|, there is a coherent sheaf Z C Ox of ideals
such that Z = {x € X | 7, # Ox}. We need to show that there is an ideal
I C R whose associated sheaf agrees with Z on X.

We define Z+ := TN 0%, and we set I := I'(X,Z7); by |[Loul7, Proposition
6.2], R =T(X, %), so we may view I as an ideal of R. It remains to show
that for each affinoid open subspace SpaR' C X, R' ®r I = Z(Spa R'). To
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see this, we observe that we have a finite cover X = U; Spa R <fi>, so it
suffices to check this with R’ = Spa R <fi>

Setting R; := R <%> and U; = SpaR<%>, we have an exact sequence of
R-modules
0—>I—>HI+ )= [[zHwinyy)
?-]

For any fixed index 49, we may tensor with R? and complete f;,-adically; as
R is noetherian, our sequence

o = o= + o -+
O—>Ri0%[—>1:[<RiO%>I ) H(R RITH( UmU)>

remains exact. But Rf ®r I (U;) generates T(U;, NU;) and Ry, QrItT(UN
U;) generates Z(U;, NU; NUj;) after inverting a pseudouniformizer u;, of Ry,
for all i, §, and {U;, N U;}; is a cover of Uj,, so in fact Ry, @g I = Z(U;, ), as
desired. O

Corollary A.0.2. Let FE be a p-adic field, let X = Spa Ry, where Ry =

Oplzi, . @] (Y1, -y Yny) /I, and let ) := Spa Ro, where Re = Og[z1,. .., 2m, | (Wi, ..., Wm,) /J.
Suppose that Ry has dimension at least 2. Suppose that Z C X*" Xg, Q)

is a Zariski-closed subset and that there is some integer N > 1 such that

Z N Spa Ry <%, {%}> [%] X 9) is contained in the rational domain {z]N <

wu#0 forallj=1,...,m} for each u € {wg,x1,...,2n, }. Then there is a

closed formal subscheme 3 C X @, Y such that 3** N (Spa R1)* x .Y = Z

(where the intersection is taken inside (Spa Ry @ﬁE Rz)an).

Proof. Replacing Z with Z N V(I)* NV (J)*, we may assume that I =
J = (0), so that Ry = Og[{z:}] {yx}) and Ry = Og[{z;}] ({w¢}). Then
by Proposition it suffices to extend Z to a Zariski-closed subset of
(Spa Ry @gE Rg) . This analytic locus, in turn, is covered by the affinoid
pseudorigid spaces

b= S st (2212} 2], 00 [}

for u € {wg,x1,...,2n, } and

V., = spaﬁE[[{xl},,{zj}J]]<Z’j,{ZJO} {yk}k,{%} {wz}z> Lﬂ]

for jo =1,...,m. Since the V), are contained in (Spa R;)*" X ¢, R2, we only
need to extend the intersections Z N szo to Zariski-closed subsets of VZJ.O.

We can cover each Vi by its open subspaces defined by inequalities

Vet = {2 T < lwpl},  Vagan = {lz 7 < Jail}
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fori=1,...,n1 and

V.2 ={lmel < |23t # 0 and |z;| < [2) T # 0 for all i}

so it suffices to find suitable Zariski-closed subsets of each of these spaces.
By assumption, Z N szmg is empty. Moreover,
Vzio’pJ C (Spa Ry)*" X o, Ro

and
V..

g 1%

1 C (SpaRl)an X0g Ry
since the conditions |sz 1 < |wg| and 2, # 0 imply wg # 0 (and similarly
for {|zjj\g+1\ < |z;|} and zj, # 0). Thus, Z N Viow2: Z 0V 2 are defined

J Jo %
by sheaves of ideals which agree on intersections Vejosist N Vz it 1

By construction, these sheaves agree on the overlaps Vejowd N Vz p2 =

{|z§g+1\ = |wpl} and Vs i1 N Ve 2 = {\zj].g+1| = |z;|}. We have therefore

extended the sheaf of ideals defining ZNV,, N (Spa R1)™ X g, Ry to a sheaf

of ideals on all of V., as desired. O
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