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1. (a) We first prove that the given map G×Hom(V,W )→ Hom(V,W ) is actually a group action.
That is, we need to show that (gh) · f = g · (h · f). But

ρW (gh)◦f◦ρV ((gh)−1) = ρW (g)◦(ρW (h)◦f◦ρV (h−1))◦ρV (g−1) = ρW (g)◦(h·f)◦ρV (g−1) = g·(h·f)

Applying this statement with h = g−1 implies that for every g ∈ G, the map Hom(V,W ) →
Hom(V,W ) given by f 7→ g · f is invertible, so we get a representation.

(b) Recall that f is G-linear if and only if ρW (g) ◦ f = f ◦ ρV (g) for all g ∈ G. This holds if and
only if ρW (g) ◦ f ◦ ρV (g−1) = f ◦ ρV (g) ◦ ρV (g−1) = f for all g ∈ G, which is the same as the
condition that g · f = f for all g ∈ G.

2. This representation is reducible, because it has a 1-dimensional subrepresentation 〈( 1
0 )〉. But this

is the only 1-dimensional subrepresentation, so the representation is indecomposable.

3. Let (V, ρ) denote the given 4-dimensional representation; if v1, v2, v3, v4 are the basis corresponding
to the vertices of the square, then ρ(s)(vi) = vi+1 (with indices taken modulo 4) and ρ(t)(vi) = v5−i.
This representation cannot be irreducible, because we showed during lecture that the only irre-
ducible representations of D8 have dimension 1 or 2. We first find all the 1-dimensional subrepre-
sentations of the given representation.

Suppose a1v1 +a2v2 +a3v3 +a4v4 generates a subrepresentation, so that a1v1 +a2v2 +a3v3 +a4v4
is a simultaneous eigenvector of ρ(s) and ρ(t). Recall that on the first problem sheet, we showed
that there are four 1-dimensional representations of D8, and s and t act by multiplication by ±1.
Thus,

ρ(s)(a1v1 + a2v2 + a3v3 + a4v4) = a4v1 + a1v2 + a2v3 + a3v4

so we must have ai = ±1 · ai+1. Similarly,

ρ(t)(a1v1 + a2v2 + a3v3 + a4v4) = a4v1 + a3v2 + a2v3 + a1v4

so we must have ai = ±1 · a5−i.
This implies that a1 = a3, a2 = a4, and a1 = ±a2. We conclude that the only 1-dimensional
subrepresentations of V are generated by v1 + v2 + v3 + v4 and v1 − v2 + v3 − v4.

It follows that V is the direct sum of an irreducible 2-dimensional representation, the trivial rep-
resentation, and the 1-dimensional representation s, t 7→ −1.

4. Any 1-dimensional subrepresentation has to be generated by an eigenvector for both
(
0 −1
1 0

)
and(

1 0
0 −1

)
. Since the eigenvalues of

(
1 0
0 −1

)
are distinct, any eigenvector is either a multiple of ( 1

0 ) or

a multiple of
(

0
−1

)
. But neither of these is an eigenvector for

(
0 −1
1 0

)
, so

(
0 −1
1 0

)
and

(
1 0
0 −1

)
have

no common eigenvectors and the representation is irreducible.

This is the only irreducible 2-dimensional of D8, up to isomorphism. To see this, either go through
Exercise 8 (and note that for n = 4, (n − 2)/2 = 1, or else recall from lectures that |D8| =
d11 + d22 + . . . + d2r, where the di are the dimensions of the irreducible representations of D8, and
recall from the first problem sheet that there are exactly 4 1-dimensional representations of D8.
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5. (a) Since χ : G→ GL1(C) is a homomorphism and GL1(C) is abelian, χ(hgh−1) = χ(h)χ(g)χ(h)−1 =
χ(g).

(b) First observe that (21a)(12)(21a)−1 = (1a). Next observe that (1ab)(1a)(1ab)−1 = (ab).
Thus, for any a, b ∈ {1, . . . , n}, (ab) and (12) are conjugate.

(c) Let χ : Sn → GL1(C) be a representation. Then the first two parts of this question imply
that χ(ab) = χ(12) for all a, b ∈ {1, . . . , n}. Since χ(12)2 = 1, we must have χ(12) = ±1.

6. Recall that Hom(V ⊕r, V ⊕r) ∼= ⊕i,j Hom(V, V ), as representations of G. Thus, Hom(V ⊕r, V ⊕r)G ∼=
⊕i,j Hom(V, V )G, and since Hom(V, V )G is a 1-dimensional complex vector space (by Schur’s
lemma), Hom(V ⊕r, V ⊕r)G is a vector space of dimension r2.

However, Hom(V ⊕r, V ⊕r) and Hom(V ⊕r, V ⊕r)G are also (non-commutative) rings, where multi-
plication is the composition of two endomorphisms. I claim it is isomorphic to the ring of r × r
matrices. To see this, let δij ∈ Matr(C) denote the matrix with a 1 in the (i, j) entry and 0 ev-
erywhere else. Define a map Matr(C)→ Hom(V ⊕r, V ⊕r)G by sending δij to the map V ⊕r → V ⊕r

which sends the jth summand to the ith summand via the identity. Extending this by linear-
ity defines a ring homomorphism, and it is evidently injective. Since the source and target are
finite-dimensional vector spaces with the same dimension, it is an isomorphism.

7. (a) Let G = Cn = 〈g : gn = e〉. Then a 1-dimensional matrix representation ρ : Cn → GL1(C) is
determined by ρ(g). Since ρ(g)n = ρ(gn) = ρ(e) = 1, ρ(g) must be of the form ζi, ζ = e2πi/n.
Any choice 0 ≤ i ≤ n−1 yields a representation. Moreover, they are pairwise non-isomorphic,
because if two of them were isomorphic, their matrix representations would be conjugate. But
GL1(C) is abelian, so Pρ(g)P−1 = ρ(g) for all P ∈ GL1(C).

It suffices to show that each ζi is an eigenvalue of ρreg(g). But to see this, we simply calculate
det(λ1− ρreg(g)) = λn − 1.

(b) Every finite abelian group is the product of finite cyclic groups, i.e., G ∼=
∏
i Cni

. A 1-
dimensional representation ρ : G → GL1(C) is determined by specifying ρ(gi), where gi is
a generator of Cni

. There are ni choices for ρ(gi), so there are
∏
i ni choices for ρ. Again

because GL1(C) is abelian, they are pairwise non-isomorphic.

8. (a) The eigenvalues of ρV (t) are two numbers of the form ζi, where ζ = e2πi/n. If ρV (t) were not
diagonalizable, we could put it in Jordan normal form. That is, we could find a basis of V

such that ρV (t) had matrix
(
ζi 1

0 ζi

)
. But

(
ζi 1

0 ζi

)n
=
(

1 nζn−1

0 1

)
6= ( 1 0

0 1 ), so this is impossible.

Thus, we can find a basis for V so that ρV (t) has matrix
(
ζi 0

0 ζj

)
with 0 ≤ j ≤ i ≤ n− 1.

(b) If i = j, then ρV (t) is diagonal with respect to any basis of V and we may choose one
diagonalizing ρV (s).

Otherwise, suppose ρV (s) has matrix
(
a b
c d

)
. If a = 0, then

ρV (s)2 =
(
0 b
c d

)2
=
(
bc bd
cd bc+d2

)
= ( 1 0

0 1 )

implies d = 0 and bc = 1. Similarly, assuming d = 0 implies that a = 0 and bc = 1.

Now consider the equation ρV (s)ρV (t) = ρV (t−1)ρV (s). We see

aζi = aζn−i bζi = bζn−j cζj = cζn−i dζj = dζn−j

Thus, if ad 6= 0, then ζi, ζj ∈ {±1}. If i = j, we are in the first case we considered, so we may
assume n is even and ζi = −1, ζj = 1. But that implies that b = c = 0, and a, d ∈ {±1}, so
the matrix for ρV (s) is diagonal.

So we may assume a = d = 0 and bc = 1. But then we see from our calculation above that
i + j = n. Now let P =

(
b−1 0
0 1

)
. Then PρV (t)P−1 = ρV (t) and PρV (s)P−1 = ( 0 1

1 0 ), so we
may assume b = c = 1.

(c) The representation is reducible in the cases above when ad 6= 0, and when i = j. When i 6= j
and ad 6= 0, the eigenspaces for ρV (t) are distinct and generated by ( 1

0 ) and ( 0
1 ). Since neither

of these is an eigenvector for ( 0 1
1 0 ), the representation is irreducible.
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(d) If n is even, taking n/2 + 1 ≤ i ≤ n − 1 in the above construction gives us (n − 2)/2 2-
dimensional irreducible matrix representations of D2n. A calculation shows that no two are
equivalent, so they yield non-isomorphic representations.

(e) If n is odd, taking (n + 1)/2 ≤ i ≤ n − 1 in the above construction gives us (n − 1)/2 2-
dimensional irreducible matrix representations of D2n. A calculation shows that no two are
equivalent, so they yield non-isomorphic representations.
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