M3/4/5P12 Solutions #2

Rebecca Bellovin

February 8, 2017

1. (a) We first prove that the given map $G \times \text{Hom}(V, W) \to \text{Hom}(V, W)$ is actually a group action. That is, we need to show that $(gh) \cdot f = g \cdot (h \cdot f)$. But

 $\rho_W(gh) \circ f \circ \rho_V((gh)^{-1}) = \rho_W(g) \circ (\rho_W(h) \circ f \circ \rho_V(h^{-1})) \circ \rho_V(g^{-1}) = \rho_W(g) \circ (h \cdot f) \circ \rho_V(g^{-1}) = g \cdot (h \cdot f) \circ (h \cdot f) \circ \rho_V(g^{-1}) = g \cdot (h \cdot f) \circ (h$

Applying this statement with $h = g^{-1}$ implies that for every $g \in G$, the map $\operatorname{Hom}(V, W) \to \operatorname{Hom}(V, W)$ given by $f \mapsto g \cdot f$ is invertible, so we get a representation.

- (b) Recall that f is G-linear if and only if $\rho_W(g) \circ f = f \circ \rho_V(g)$ for all $g \in G$. This holds if and only if $\rho_W(g) \circ f \circ \rho_V(g^{-1}) = f \circ \rho_V(g) \circ \rho_V(g^{-1}) = f$ for all $g \in G$, which is the same as the condition that $g \cdot f = f$ for all $g \in G$.
- 2. This representation is reducible, because it has a 1-dimensional subrepresentation $\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle$. But this is the only 1-dimensional subrepresentation, so the representation is indecomposable.
- 3. Let (V, ρ) denote the given 4-dimensional representation; if v_1, v_2, v_3, v_4 are the basis corresponding to the vertices of the square, then $\rho(s)(v_i) = v_{i+1}$ (with indices taken modulo 4) and $\rho(t)(v_i) = v_{5-i}$. This representation cannot be irreducible, because we showed during lecture that the only irreducible representations of D_8 have dimension 1 or 2. We first find all the 1-dimensional subrepresentations of the given representation.

Suppose $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$ generates a subrepresentation, so that $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$ is a simultaneous eigenvector of $\rho(s)$ and $\rho(t)$. Recall that on the first problem sheet, we showed that there are four 1-dimensional representations of D_8 , and s and t act by multiplication by ± 1 . Thus,

$$\rho(s)(a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4) = a_4v_1 + a_1v_2 + a_2v_3 + a_3v_4$$

so we must have $a_i = \pm 1 \cdot a_{i+1}$. Similarly,

$$\rho(t)(a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4) = a_4v_1 + a_3v_2 + a_2v_3 + a_1v_4$$

so we must have $a_i = \pm 1 \cdot a_{5-i}$.

This implies that $a_1 = a_3$, $a_2 = a_4$, and $a_1 = \pm a_2$. We conclude that the only 1-dimensional subrepresentations of V are generated by $v_1 + v_2 + v_3 + v_4$ and $v_1 - v_2 + v_3 - v_4$.

It follows that V is the direct sum of an irreducible 2-dimensional representation, the trivial representation, and the 1-dimensional representation $s, t \mapsto -1$.

4. Any 1-dimensional subrepresentation has to be generated by an eigenvector for both $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Since the eigenvalues of $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are distinct, any eigenvector is either a multiple of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ or a multiple of $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$. But neither of these is an eigenvector for $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, so $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ have no common eigenvectors and the representation is irreducible.

This is the only irreducible 2-dimensional of D_8 , up to isomorphism. To see this, either go through Exercise 8 (and note that for n = 4, (n - 2)/2 = 1, or else recall from lectures that $|D_8| = d_1^1 + d_2^2 + \ldots + d_r^2$, where the d_i are the dimensions of the irreducible representations of D_8 , and recall from the first problem sheet that there are exactly 4 1-dimensional representations of D_8 .

- 5. (a) Since $\chi : G \to \operatorname{GL}_1(\mathbf{C})$ is a homomorphism and $\operatorname{GL}_1(\mathbf{C})$ is abelian, $\chi(hgh^{-1}) = \chi(h)\chi(g)\chi(h)^{-1} = \chi(g)$.
 - (b) First observe that $(21a)(12)(21a)^{-1} = (1a)$. Next observe that $(1ab)(1a)(1ab)^{-1} = (ab)$. Thus, for any $a, b \in \{1, ..., n\}$, (ab) and (12) are conjugate.
 - (c) Let $\chi : S_n \to \operatorname{GL}_1(\mathbf{C})$ be a representation. Then the first two parts of this question imply that $\chi(ab) = \chi(12)$ for all $a, b \in \{1, \ldots, n\}$. Since $\chi(12)^2 = 1$, we must have $\chi(12) = \pm 1$.
- 6. Recall that $\operatorname{Hom}(V^{\oplus r}, V^{\oplus r}) \cong \bigoplus_{i,j} \operatorname{Hom}(V, V)$, as representations of G. Thus, $\operatorname{Hom}(V^{\oplus r}, V^{\oplus r})^G \cong \bigoplus_{i,j} \operatorname{Hom}(V, V)^G$, and since $\operatorname{Hom}(V, V)^G$ is a 1-dimensional complex vector space (by Schur's lemma), $\operatorname{Hom}(V^{\oplus r}, V^{\oplus r})^G$ is a vector space of dimension r^2 .

However, $\operatorname{Hom}(V^{\oplus r}, V^{\oplus r})$ and $\operatorname{Hom}(V^{\oplus r}, V^{\oplus r})^G$ are also (non-commutative) rings, where multiplication is the composition of two endomorphisms. I claim it is isomorphic to the ring of $r \times r$ matrices. To see this, let $\delta_{ij} \in \operatorname{Mat}_r(\mathbb{C})$ denote the matrix with a 1 in the (i, j) entry and 0 everywhere else. Define a map $\operatorname{Mat}_r(\mathbb{C}) \to \operatorname{Hom}(V^{\oplus r}, V^{\oplus r})^G$ by sending δ_{ij} to the map $V^{\oplus r} \to V^{\oplus r}$ which sends the *j*th summand to the *i*th summand via the identity. Extending this by linearity defines a ring homomorphism, and it is evidently injective. Since the source and target are finite-dimensional vector spaces with the same dimension, it is an isomorphism.

7. (a) Let G = C_n = ⟨g : gⁿ = e⟩. Then a 1-dimensional matrix representation ρ : C_n → GL₁(C) is determined by ρ(g). Since ρ(g)ⁿ = ρ(gⁿ) = ρ(e) = 1, ρ(g) must be of the form ζⁱ, ζ = e^{2πi/n}. Any choice 0 ≤ i ≤ n - 1 yields a representation. Moreover, they are pairwise non-isomorphic, because if two of them were isomorphic, their matrix representations would be conjugate. But GL₁(C) is abelian, so Pρ(g)P⁻¹ = ρ(g) for all P ∈ GL₁(C). It suffices to show that each ζⁱ is an eigenvalue of ρ_{reg}(g). But to see this, we simply calculate

$$\det(\lambda \mathbf{1} - \rho_{\mathrm{reg}}(g)) = \lambda^n - 1.$$

- (b) Every finite abelian group is the product of finite cyclic groups, i.e., $G \cong \prod_i C_{n_i}$. A 1dimensional representation $\rho : G \to \operatorname{GL}_1(\mathbf{C})$ is determined by specifying $\rho(g_i)$, where g_i is a generator of C_{n_i} . There are n_i choices for $\rho(g_i)$, so there are $\prod_i n_i$ choices for ρ . Again because $\operatorname{GL}_1(\mathbf{C})$ is abelian, they are pairwise non-isomorphic.
- 8. (a) The eigenvalues of $\rho_V(t)$ are two numbers of the form ζ^i , where $\zeta = e^{2\pi i/n}$. If $\rho_V(t)$ were not diagonalizable, we could put it in Jordan normal form. That is, we could find a basis of V such that $\rho_V(t)$ had matrix $\begin{pmatrix} \zeta^i & 1 \\ 0 & \zeta^i \end{pmatrix}$. But $\begin{pmatrix} \zeta^i & 1 \\ 0 & \zeta^i \end{pmatrix}^n = \begin{pmatrix} 1 & n\zeta^{n-1} \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, so this is impossible. Thus, we can find a basis for V so that $\rho_V(t)$ has matrix $\begin{pmatrix} \zeta^i & 0 \\ 0 & \zeta^j \end{pmatrix}$ with $0 \le j \le i \le n-1$.
 - (b) If i = j, then $\rho_V(t)$ is diagonal with respect to any basis of V and we may choose one diagonalizing $\rho_V(s)$.

Otherwise, suppose $\rho_V(s)$ has matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. If a = 0, then

$$\rho_V(s)^2 = \begin{pmatrix} 0 & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} bc & bd \\ cd & bc+d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

implies d = 0 and bc = 1. Similarly, assuming d = 0 implies that a = 0 and bc = 1. Now consider the equation $\rho_V(s)\rho_V(t) = \rho_V(t^{-1})\rho_V(s)$. We see

$$a\zeta^i = a\zeta^{n-i}$$
 $b\zeta^i = b\zeta^{n-j}$ $c\zeta^j = c\zeta^{n-i}$ $d\zeta^j = d\zeta^{n-j}$

Thus, if $ad \neq 0$, then $\zeta^i, \zeta^j \in \{\pm 1\}$. If i = j, we are in the first case we considered, so we may assume n is even and $\zeta^i = -1, \zeta^j = 1$. But that implies that b = c = 0, and $a, d \in \{\pm 1\}$, so the matrix for $\rho_V(s)$ is diagonal.

So we may assume a = d = 0 and bc = 1. But then we see from our calculation above that i + j = n. Now let $P = \begin{pmatrix} b^{-1} & 0 \\ 0 & 1 \end{pmatrix}$. Then $P\rho_V(t)P^{-1} = \rho_V(t)$ and $P\rho_V(s)P^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, so we may assume b = c = 1.

(c) The representation is reducible in the cases above when $ad \neq 0$, and when i = j. When $i \neq j$ and $ad \neq 0$, the eigenspaces for $\rho_V(t)$ are distinct and generated by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Since neither of these is an eigenvector for $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, the representation is irreducible.

- (d) If n is even, taking $n/2 + 1 \le i \le n 1$ in the above construction gives us (n 2)/2 2dimensional irreducible matrix representations of D_{2n} . A calculation shows that no two are equivalent, so they yield non-isomorphic representations.
- (e) If n is odd, taking $(n + 1)/2 \le i \le n 1$ in the above construction gives us (n 1)/2 2dimensional irreducible matrix representations of D_{2n} . A calculation shows that no two are equivalent, so they yield non-isomorphic representations.