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1. (a) Yes. Each element of G can be written uniquely in the form skt` for 0 ≤ k ≤ 3 and 0 ≤ ` ≤ 1,

and the image of this element under the representation we have defined is
(

(−1)` 0

0 ik

)
. This is

the identity matrix if and only if ` is even and 4|k. But that implies skt` = e.

(b) No. This representation sends s2t to

( i 0
1 1 )

2 ( −1 0
i+1 1

)
=
( −1 0
i+1 1

)2
= ( 1 0

0 1 )

(c) The characteristic polynomial of Q is det(λI−Q) = (λ− i)(λ−1); it is a degree-2 polynomial
with distinct roots 1 and i, so Q can be diagonalized to S. Similarly, the characteristic
polynomial of R is (λ− 1)(λ+ 1), so it can be diagonalized to T .

(d) The eigenspaces of Q are generated by
(

2
−(i+1)

)
and ( 0

1 ), and these vectors also generate the
eigenspaces of R.

(e) No, one representation is faithful and the other isn’t.

2. (a) ρreg(g) =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

. . .
...

0 · · · 0 1 0


(b) The characteristic polynomial of ρreg(g) is det(λI − ρreg(g)) = λn − 1, so the eigenvalues are

the nth roots of 1.

(c) Let ζ ∈ C be an nth root of 1, so that ζn = 1. Suppose that a0be+a1bg+ · · ·+an−1bgn−1 is an
eigenvector for ρreg(g) with eigenvalue ζ. Since ρreg(g)(a0be+a1bg+· · ·+an−1bgn−1) = an−1be+
a0bg+ · · ·+an−2bgn−1 , ρreg(g)(a0be+a1bg+ · · ·+an−1bgn−1) = ζ(a0be+a1bg+ · · ·+an−1bgn−1)
implies ζai = ai−1 (with a−1 taken to mean an−1). Thus, {be+ζn−1bg+ · · ·+ζbgn−1}ζ (where
the set runs over each ζ an nth root of 1) is a basis of eigenvectors.

3. Yes. Commuting diagonalizable matrices can be simultaneously diagonalized.

4. (a) (123) and (23), respectively.

(b) The matrix for “counterclockwise rotation” is
(
−1/2 −

√
3/2√

3/2 −1/2

)
.

(c) The eigenvalues of
(
−1/2 −

√
3/2√

3/2 −1/2

)
are given by the roots of λ2 +λ+ 1, so they are −1±i

√
3

2 ; we

write ω = −1+i
√
3

2 and ω−1 = ω2 = −1−i
√
3

2 . The corresponding eigenspaces are generated by(
1
−i
)

and
(−i

1

)
.

The map induced by “reflection across the x-axis” sends
(

1
−i
)

to ( 1
i ) = i

(−i
1

)
and

(−i
1

)
to( −i

−1
)

= −i
(

1
−i
)
. Thus, the matrix for “reflection across the x-axis” with respect to the basis{(

1
−i
)
,
(−i

1

)}
is
(
0 −i
i 0

)
.

5. Suppose ρ : D8 → GL1(C) is a group homomorphism. Then ρ(t)2 = ρ(t2) = ρ(e) = 1, so ρ(t) = ±1.
Also, ρ(s)−1 = ρ(s−1) = ρ(tst) = ρ(t)ρ(s)ρ(t) = ρ(s) (where we use the fact that GL1(C) is a
commutative group to say that ρ(t)ρ(s)ρ(t) = ρ(t)2ρ(s) = ρ(s)). Thus, ρ(s)−1 = ρ(s) so ρ(s)2 = 1.
Thus, there are four 1-dimensional representations of D8.
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6. (a) S3 is generated by (123) and (23).

ρ(123) =

0 0 1
1 0 0
0 1 0

 and ρ(23) =

1 0 0
0 0 1
0 1 0


(b) Let (b1, b2, b3) denote the standard basis for the permutation representation, and suppose that

a1b1 + a2b2 + a3b3 generates a 1-dimensional subrepresentation of V ; then for each g ∈ S3

ρ(g)(a1b1 + a2b2 + a3b3) = cg(a1b1 + a2b2 + a3b3) for cg ∈ C constants depending on g.

It is enough to consider this equation for g = (123) and g = (23), since those generate S3.
Then

ρ(123)

a1a2
a3

 =

0 0 1
1 0 0
0 1 0

a1a2
a3

 =

a3a1
a2

 = c(123)

a1a2
a3


and

ρ(23)

a1a2
a3

 =

1 0 0
0 0 1
0 1 0

a1a2
a3

 =

a1a3
a2

 = c(23)

a1a2
a3


The second equation implies c(23) = 1, so a2 = a3. But then the first equation implies that
c(123) = 1 and a1 = a2 = a3.

Thus, b1 + b2 + b3 generates a subrepresentation isomorphic to the trivial representation, and
this is the only 1-dimensional subrepresentation of V .

(c) The orthogonal complement to 〈b1 +b2 +b3〉 is W ′ := {a1b1 +a2b2 +a3b3 : ai ∈ C,
∑
i ai = 0}.

Since this condition is preserved by permuting b1, b2, and b3, W ′ is stabilized by S3.

(d) The eigenvalues of ρ(123) are cube roots {1, ω, ω2} of 1, and they have eigenvectors
(

1
1
1

)
,(

1
ω2

ω

)
, and

(
1
ω
ω2

)
, respectively.

Since

ρ(23)

1
1
1

 =

1
1
1

 ρ(23)

 1
ω2

ω

 =

 1
ω
ω2

 and ρ(23)

 1
ω
ω2

 =

 1
ω2

ω


the matrix for ρ(23) with respect to this basis of eigenvectors is still

(
1 0 0
0 0 1
0 1 0

)
.

7. (a) We need to prove that for all w ∈ W and g ∈ G, f−1(ρW (g)w) = ρV (g)(f−1(w)). However,
f(ρV (g)(f−1(w)) = ρW (g)(f(f−1(w))) = ρW (g)(w) for all w ∈ W and g ∈ G, since f is
assumed G-linear. If we apply f−1 to both sides, we get the desired statement.

(b) Let (V1, ρ1), (V2, ρ2), and (V3, ρ3) be representations of G, and suppose f12 : V1 → V2 and
f23 : V2 → V3 are G-linear maps of vector spaces. Then for every v ∈ V1 and every g ∈ G,

(f23◦f12)(ρ1(g)v) = f23(f12(ρ1(g)v)) = f23(ρ2(g)f12(v)) = ρ3(g)(f23(f12(v))) = ρ3(g)(f23◦f12)(v)

as desired.

(c) If (V, ρV ) is a representation, it is isomorphic to itself (since the identity map is a G-linear
isomorphism). If (V, ρV ) is isomorphic to (W,ρW ) and f : V →W is a G-linear isomorphism,
then (W,ρW ) is isomorphic to (V, ρV ) and f−1 : W → V is a G-linear isomorphism. Tran-
sitivity follows from the previous result that the composition of G-linear homomorphisms is
G-linear.

8. The composition of two group homomorphisms is a group homomorphism, so ρ ◦ f : G → GL(V )
is also a homomorphism.

9. (a) Recall that the cosets of H in G are sets of the form gH for g ∈ G. Then G acts on the set of
cosets via g′ ·gH := (g′g)H. Since the set of cosets is finite, we can construct a representation
as in Example 3.2.5 of the notes.
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(b) The cosets of An in Sn are An and (12)An; if ρ is the associated 2-dimensional representation
of Sn, then for any transposition (ab) ∈ Sn, the matrix for ρ(ab) with respect to the natural
basis is ( 0 1

1 0 ) (since (ab)(12) ∈ An). To diagonalize ρ, it is enough to diagonalize this matrix,
which can be done with P =

(
1 1
1 −1

)
.

(c) It is the regular representation of G/H, restricted to G.
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