M3/4/5P12: Problems about induced representations

- 1. We define the 1-dimensional representation (V, ρ) of C_n by setting $\rho(s) := \zeta$ for some $\zeta \in \mathbf{C}$ with $\zeta^n = 1$. Then $\operatorname{Res}_H^G \operatorname{Ind}_H^G V$ is a 2-dimensional representation, and it is isomorphic to $V_e \oplus V_t$, where $V_e \cong V$ as representations of C_n and s acts on V_t as $\rho(tst) = \rho(s)^{-1}$. Thus, $\operatorname{Ind}_H^G V$ is irreducible as a representation of $G = D_{2n}$ if and only if $\rho_V(s) \neq \rho_V(s)^{-1}$, or in other words, if $\rho_V(s) \neq \pm 1$. In particular, if n is odd, $\operatorname{Ind}_H^G V$ is irreducible unless (V, ρ_V) is the trivial representation.
- 2. We compute the characters of both representations. The character of $W \otimes \operatorname{Ind}_{H}^{G} V$ is

$$\chi_{W \otimes \operatorname{Ind}_{H}^{G} V}(g) = \chi_{W}(g) \cdot \chi_{\operatorname{Ind}_{H}^{G} V}(g) = \chi_{W}(g) \cdot \sum_{i:g_{i}gg_{i}^{-1} \in H} \chi_{V}(g_{i}gg_{i}^{-1})$$

whereas the character of $\operatorname{Ind}_{H}^{G}(\operatorname{Res}_{H}^{G}W\otimes V)$ is

$$\chi_{\operatorname{Ind}_{H}^{G}(\operatorname{Res}_{H}^{G}W\otimes V)}(g) = \sum_{i:g_{i}gg_{i}^{-i}\in H}\chi_{\operatorname{Res}_{H}^{G}W\otimes V}(g_{i}gg_{i}^{-1}) = \sum_{i:g_{i}gg_{i}^{-i}\in H}\chi_{W}(g)\chi_{V}(g_{i}gg_{i}^{-1})$$

Since the characters agree, the representations are isomorphic.

3. There are three irreducible representations of S_3 , namely the trivial representation, the sign representation, and an irreducible 2-dimensional representation.

In order to compute irreducible decompositions of induced representations, we will use Frobenius reciprocity. Frobenius reciprocity tells us that if (W, ρ_W) is a representation of G, then $\langle \chi_{\operatorname{Ind}_H^G V}, \chi_W \rangle = \langle \chi_V, \chi_{\operatorname{Res}_H^G W} \rangle$. We therefore write down the table of restrictions of characters of S_4 to S_3 :

	$\{e\}$	$(1\ 2)$	$(1\ 2\ 3)$
size of conjugacy class	1	3	2
$\chi_{\operatorname{Res}_H^G V_{\operatorname{triv}}}$	1	1	1
$\chi_{\operatorname{Res}_H^G V_{\operatorname{sign}}}$	1	-1	1
$\chi_{\operatorname{Res}_{H}^{G}W}$	3	1	0
$\chi_{\operatorname{Res}^G_H W'}$	3	-1	0
$\chi_{\operatorname{Res}_{H}^{G}U}$	2	0	-1

Thus, if (V, ρ_V) is the trivial representation of S_3 , then

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{\operatorname{triv}} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}V_{\operatorname{triv}}} \rangle = \frac{1}{6} \left(1 + 3 + 2 \right) = 1$$

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{\operatorname{sign}} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}V_{\operatorname{sign}}} \rangle = \frac{1}{6} \left(1 - 3 + 2 \right) = 0$$

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{W} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}W} \rangle = \frac{1}{6} \left(3 + 3 + 0 \right) = 1$$

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{W'} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}W'} \rangle = \frac{1}{6} \left(3 - 3 + 0 \right) = 0$$

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{U} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}U} \rangle = \frac{1}{6} \left(2 + 0 - 2 \right) = 0$$

It follows that $\operatorname{Ind}_{H}^{G} V \cong V_{\operatorname{triv}} \oplus W$.

If (V, ρ_V) is the sign representation of S_3 , then

$$\langle \chi_{\mathrm{Ind}_{H}^{G}V}, \chi_{\mathrm{triv}} \rangle = \langle \chi_{V}, \chi_{\mathrm{Res}_{H}^{G}V_{\mathrm{triv}}} \rangle = \frac{1}{6} (1 - 3 + 2) = 0$$

$$\langle \chi_{\mathrm{Ind}_{H}^{G}V}, \chi_{\mathrm{sign}} \rangle = \langle \chi_{V}, \chi_{\mathrm{Res}_{H}^{G}V_{\mathrm{sign}}} \rangle = \frac{1}{6} (1 + 3 + 2) = 1$$

$$\langle \chi_{\mathrm{Ind}_{H}^{G}V}, \chi_{W} \rangle = \langle \chi_{V}, \chi_{\mathrm{Res}_{H}^{G}W} \rangle = \frac{1}{6} (3 - 3 + 0) = 0$$

$$\langle \chi_{\mathrm{Ind}_{H}^{G}V}, \chi_{W'} \rangle = \langle \chi_{V}, \chi_{\mathrm{Res}_{H}^{G}W'} \rangle = \frac{1}{6} (3 + 3 + 0) = 1$$

$$\langle \chi_{\mathrm{Ind}_{H}^{G}V}, \chi_{U} \rangle = \langle \chi_{V}, \chi_{\mathrm{Res}_{H}^{G}U} \rangle = \frac{1}{6} (2 + 0 - 2) = 0$$

It follows that $\operatorname{Ind}_{H}^{G} V \cong V_{\operatorname{sign}} \oplus W'$.

Finally, if (V, ρ_V) is the irreducible 2-dimensional representation of S_3 , then $\chi_V(3) = 2$, $\chi_V(1 \ 2) = 0$, and $\chi_V(1 \ 2 \ 3) = -1$. Then

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{\operatorname{triv}} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}V_{\operatorname{triv}}} \rangle = \frac{1}{6} \left(2 + 0 - 2 \right) = 0$$

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{\operatorname{sign}} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}V_{\operatorname{sign}}} \rangle = \frac{1}{6} \left(2 + 0 - 2 \right) = 0$$

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{W} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}W} \rangle = \frac{1}{6} \left(6 + 0 + 0 \right) = 1$$

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{W'} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}W'} \rangle = \frac{1}{6} \left(6 + 0 + 0 \right) = 1$$

$$\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{U} \rangle = \langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}U} \rangle = \frac{1}{6} \left(4 + 0 + 2 \right) = 1$$

It follows that $\operatorname{Ind}_{H}^{G} V \cong W \oplus W' \oplus U$.

4. We first compute the inner product of $\chi_{\operatorname{Ind}_{H}^{G}V}$ with itself: $\langle \chi_{\operatorname{Ind}_{H}^{G}V}, \chi_{\operatorname{Ind}_{H}^{G}V} \rangle = \sum_{i} d_{i}^{2}$. But Frobenius reciprocity tells us that this inner product is equal to $\langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G}\operatorname{Ind}_{H}^{G}V} \rangle$, which is equal to the number of times V occurs in the decomposition of $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V$. But V is irreducible and dim $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V = [G:H] \dim V$, so $\langle \chi_{V}, \chi_{\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V} \rangle \leq [G:H]$.

5. It is enough to check that the characters of $\operatorname{Ind}_{H}^{G} V$ and $\operatorname{Ind}_{H}^{G} V_{g_{i}}$ agree. Let $W = V_{g_{i}}$ and let $\rho_{W} := \rho_{\operatorname{Ind}_{H}^{G} V}|_{H}$ be the representation of H on W. Then if $g_{j}gg_{j}^{-1} \in H$, we have seen that $\rho_{W}(g_{j}gg_{j}^{-1}) = \rho_{V}(g_{i}g_{j}gg_{j}^{-1}g_{i}^{-1})$ as linear transformations $W = V_{g_{i}} \to W = V_{g_{i}}$. Now

$$\chi_{\mathrm{Ind}_{H}^{G}W}(g) = \sum_{j:g_{j}gg_{j}^{-1}\in H} \chi_{W}(g_{j}gg_{j}^{-1}) = \sum_{j} \chi_{W}(g_{j}gg_{j}^{-1}) = \sum_{j} \chi_{V}(g_{i}g_{j}gg_{j}^{-1}g_{i}^{-1})$$

Note that we have used the assumption that $H \triangleleft G$ is a *normal* subgroup. But $\{g_ig_j\}_j = \{g_j\}_j$, so we may rearrange the last sum to get

$$\chi_{\mathrm{Ind}_{H}^{G}W}(g) = \sum_{j} \chi_{V}(g_{i}g_{j}gg_{j}^{-1}g_{i}^{-1}) = \sum_{j} \chi_{V}(g_{j}gg_{j}^{-1}) = \chi_{\mathrm{Ind}_{H}^{G}V}(g)$$

as desired.