
M3/4/5P12 SOLUTIONS FOR PROGRESS TEST #1

Question 1.

(1) A subrepresentation is a vector subspace W ⊂ V such that ρV (g) : V → V preserves W for each
g ∈ G. Equivalently, ρV (g)(w) ∈W for all w ∈W and all g ∈ G.

(2) We first check that V G ⊂ V is a vector subspace. Indeed, if v1, v2 ∈ V G, then for any λ1, λ2 ∈ C,

ρV (g)(λ1v1 + λ2v2) = λ1ρV (g)(v1) + λ2ρV (g)(v2) = λ1v1 + λ2v2

so λ1v1 + λ2v2 ∈ V G and V G is a vector space.
If v ∈ V G and g ∈ G, then ρV (g)(v) = v ∈ V G, so ρV (g) preserves V G for all g ∈ G.

(3) Define π : V → V by setting

π(v) :=
1

|G|
∑
g∈G

ρV (g)(v)

We first need to check that im(π) ⊂ V G: For any g′ ∈ G,

ρV (g′)(π(v)) =
1

|G|
∑
g∈G

ρV (g′)ρV (g)(v)

=
1

|G|
∑
g∈G

ρV (g′g)(v)

=
1

|G|
∑
g∈G

ρV (g)(v)

= π(v)

since {g′g}g∈G = G. In addition, π is a linear transformation, since each ρV (g) : V → V is a
linear transformation and π is a linear combination of the maps ρV (g). Finally,

π(ρV (g′)(v)) =
1

|G|
∑
g∈G

ρV (g)(ρV (g′)(v))

=
1

|G|
∑
g∈G

ρV (gg′)(v)

=
1

|G|
∑
g∈G

ρV (g)(v)

= π(v)

= ρV (g′)(π(v))

since {gg′}g∈G = G, so π is G-linear.

(4) V G is generated by the elements
(

0
1
0

)
and

(
0
0
1

)
.

To write down π as in part (3), it suffices to write down π
(

1
0
0

)
, π
(

0
1
0

)
, and π

(
0
0
1

)
. Since(

0
1
0

)
,
(

0
0
1

)
∈ V G,

π
(

0
1
0

)
=
(

0
1
0

)
and π

(
0
0
1

)
=
(

0
0
1

)
1



In addition,

π

1
0
0

 =
1

4

∑
g∈C4

ρV (g)

0
1
0


=

1

4

1
0
0

+

 i 0 0
i− 1 1 0
i− 1 0 1

1
0
0

+

−1 0 0
−2 1 0
−2 0 1

1
0
0

+

 −i 0 0
−i− 1 1 0
−i− 1 0 1

1
0
0


=

1

4

1
0
0

+

 i
i− 1
i− 1

+

−1
−2
−2

+

 −i
−i− 1
−i− 1

 =

 0
−1
−1


Thus, the matrix for π : V → V G is

 0 0 0
−1 1 0
−1 0 1

. Its kernel is generated by
(

1
1
1

)
, and

ρV (g)

1
1
1

 =

 i 0 0
i− 1 1 0
i− 1 0 1

1
1
1

 = i ·

1
1
1


Thus, V ∼= Vtriv ⊕ Vtriv ⊕ V1, where (Vtriv, ρtriv) is the 1-dimensional trivial representation and
(V1, ρ1) is the 1-dimensional representation with ρ1(g) = i.

Question 2.

(1) Suppose (V, ρV ) is a 1-dimensional representation of S4. Then for any transposition (a b) ∈ S4,
ρV (a b)2 = 1, so ρV (a b) = ±1. Since every transposition is conjugate to (1 2), ρV (a b) = ρV (1 2)
and there are only two possibilities: the trivial representation, where ρV (g) = 1 for all g ∈ S4,
and the sign representation, where ρV (g) is 1 for even permutations and −1 for odd permutations
(which includes all transpositions).

(2) The vector

(
1
1
1
1

)
generates the trivial subrepresentation.

Suppose

(
c1
c2
c3
c4

)
generates a subrepresentation. It must be isomorphic to either the trivial rep-

resentation or the sign representation, so

(
c1
c2
c3
c4

)
is a simultaneous eigenvector for the above six

matrices, with eigenvalue ±1. This eigenvalue 1 for each matrix if the subrepresentation is iso-
morphic to the trivial representation, and it must be −1 for each matrix if the subrepresentation
is isomorphic to the sign representation.

But those matrices amount to swapping ca and cb for all pairs (a, b), so if the eigenvalue were
−1, we would have ca = −cb for all pairs (a, b), implying c1 = c2 = c3 = c4 = 0. Thus, the
eigenvalue must be 1. We then see (by applying the matrix for the transpositions (a b)) that

c1 = cb for all pairs (a, b). Therefore, c1 = c2 = c3 = c4, so our eigenvector is a multiple of

(
1
1
1
1

)
.

Thus, there are no other 1-dimensional subrepresentations of V .
(3) Let W be the 1-dimensional trivial representation above. Maschke’s theorem tells us that there

is a complementary subrepresentation W ′ ⊂ V , which must be 3-dimensional. If W ′ were
reducible, it would have a 1-dimensional subrepresentation, but W is the only 1-dimensional
subrepresentation of V .

(4) We have already found two 1-dimensional representations of S4 and we have proved that there
is a 3-dimensional irreducible representation of S4. But

|S4| = 24 =
∑
i

(dimWi)
2

where the Wi run over the irreducible representations of S4. Therefore, if we denote the irre-
ducible representations we have already found by W1, W2, and W3, we have

24 = 12 + 12 + 32 +
∑
i>3

(dimWi)
2

2



so 13 =
∑

i>3(dimWi)
2. Since dimWi ≥ 2 for i > 3, the only way to write 13 as a sum of squares

is 13 = 22 + 32. Thus, the irreducible representations of S4 have dimensions 1, 1, 2, 3,and 3.
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