
M3/4/5P12: INDUCED REPRESENTATIONS

REBECCA BELLOVIN

1. Definitions and properties

1.1. Definition. Suppose G is a finite group and H ⊂ G is a subgroup. Then if (V, ρV )
is a representation of G, we may restrict ρV : G → GL(V ) to H to get a homomorphism
ρV |H : H → GL(V ). We denote this representation of H by (ResGH V, ρV |H).

The theory of induced representations lets us go the other way: Given a representation
(W, ρW ) of H, IndGH V will denote the vector space underlying a representation of G.

The constructions we give are different from the “standard” constructions; we have done this
to avoid having to talk about tensor products of modules over non-commutative rings.

Definition 1.1. Let H ⊂ G be a subgroup and let (V, ρV ) be a representation of H. Then

IndGH V := {f : G→ V : f(hg) = ρV (h)f(g) for allh ∈ H, g ∈ G}

We define an action G × IndGH V → IndGH V by setting (g · f)(g′) = f(g′g), and we write
ρIndGH V for the associated representation.

Thus, IndGH is the set of functions f : G→ V which are equivariant for multiplication by H.

Now we fix coset representatives g1, . . . , gs ∈ G, so that G =
∐

iHgi.

Lemma 1.2. If f ∈ IndGH V , then f is determined by its values on {gi}i.

Proof. By definition, f(hgi) = ρV (h)f(gi). Since any element g ∈ G can be written uniquely
in the form g = gih, the set of values {f(gi)}i determines f . �

Example 1.3. Suppose H = {e} and (V, ρV ) is the trivial representation. Then IndG{e} V =

{f : G → V }, which has basis {δg}g∈G, where δg(h) =

{
1 if g = h

0 if g 6= h
, and G acts via

h · δg = δgh−1 .

But we can define a map Vreg → IndG{e} via bg 7→ δg−1 . This is an isomorphism of vector
spaces, and

(ρreg(h)(bg)) = bhg 7→ δg−1h−1 = h · δg−1

so it is G-linear. Thus, IndG{e} is naturally isomorphic to Vreg.

Proposition 1.4. Let (V, ρV ) and (V ′, ρV ′) be representations of H and let ϕ : V → V ′ be
an H-linear map. Then there is a G-linear map IndGH ϕ : IndGH V → IndGH V

′.
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Proof. We may define IndGH ϕ by defining (IndGH ϕ)(f)(g) := ϕ ◦ f : G→ V ′ for f ∈ IndGH V .
Then

(IndGH ϕ)(g′ · f)(g) = (ϕ ◦ g′ · f)(g) = ϕ(f(gg′)) = (g′ · (ϕ ◦ f))(g)

so IndGH ϕ is G-linear. �

Definition 1.5. The support of a function f : G→ V is the set {g ∈ G : f(g) 6= 0}.

If f ∈ IndGH V , then since f(hg) = ρV (h)f(g) for all h ∈ H, g ∈ G, if f(g) 6= 0 then
f(hg) 6= 0. Thus, the support of f is a union of right cosets.

If g ∈ G, we define Vg ⊂ IndGH V to be the subspace of functions f ∈ IndGH V whose support
is contained in Hg.

Lemma 1.6. There is an H-linear isomorphism

ev : Ve → V

f 7→ f(e)

Proof. Observe that Ve = {f : H → V : f(h) = ρV (h)f(e) for h ∈ H}. Thus, f ∈ Ve is
determined by f(e) and any choice of f(e) ∈ V determines an element of Ve. Thus, we have
an isomorphism of vector spaces.

Furthermore,

ρIndGH V (h)(f)(e) = f(e · h) = f(h) = ρV (h)f(e)

so the map is H-linear. �

Lemma 1.7. For any g ∈ G, ρIndGH V (g) : IndGH V → IndGH V carries Ve isomorphically to

Vg−1, with inverse ρIndGH V (g−1). Consequently, ρIndGH V (g) carries Vg′ isomorphically to Vg′g−1.

Proof. Let f ∈ Ve. Then

(ρIndGH V (g)(f))(g′) = f(g′g)

which is 0 unless g′g ∈ H, or equivalently, unless g′ ∈ Hg−1. Thus, (ρIndGH V (g)(f)) ∈ Vg−1 .

On the other hand, if f ∈ Vg−1 , then

(ρIndGH V (g−1)(f))(g′) = f(g′g−1)

which is 0 unless g′g−1 ∈ Hg−1, or equivalently, unless g′ ∈ H. Thus, (ρIndGH V (g)(f)) ∈
Ve. �

Corollary 1.8. Each subspace Vg ⊂ IndGH V is isomorphic (as a vector space) to V .

Corollary 1.9. We fix a set of coset representatives g1, . . . , gs for HG. Then the natural
map

⊕iVgi → IndGH V

(fi) 7→
∑
i

fi

is an isomorphism. It follows that dim IndGH V = [G : H] dimV .
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Proof. If f ∈ IndGH V , we define fi(g) =

{
f(g) if g ∈ Hgi
0 if g /∈ Hgi

. Then f 7→ (fi)i is an inverse to

the map above. �

Example 1.10. Suppose (V, ρV ) is the regular representation of H. Then we define a G-
linear map Vreg → IndGH V , where (Vreg, ρreg) is the regular representation of G, by sending

bg 7→

(
g′ 7→

{
bh if g′ = hg−1 for h ∈ H
0 if g′ /∈ Hg−1

)
In other words, we choose a function f : G→ V which is 0 outside Hg−1 and sends hg−1 to
bh.

Example 1.11. For a more interesting example, consider G = D2n = 〈s, t : sn = t2 =
e, tst = s−1〉 and H = Cn = 〈s : sn = e〉 ⊂ G. Then a 1-dimensional representation (V, ρV )
of H is given by g 7→ ζ, where ζn = 1. We compute IndGH V .

Corollary 1.9 implies that IndGH V is 2-dimensional, and as a vector space IndGH V
∼= Ve⊕ Vt,

where Ve and Vt are 1-dimensional. Furthermore, Lemma 1.7 implies that ρIndGH V (s) preserves
Ve and carries Vt isomorphicallly to Vts = Vt. We actually have a commutative diagram

Vt
ρ
IndG

H
V
(s)

// Vt

ρ
IndG

H
V
(t)

��
Ve

ρ
IndG

H
V
(tst)

//

ρ
IndG

H
V
(t)

OO

Ve

so ρIndGH V (s) : Vt → Vt acts via ρV (s−1).

Thus, if we choose a basis vector v ∈ V , we get a basis vector v′ ∈ Ve and we may choose
a basis vector ρIndGH V (t)(v′) ∈ Vt. With respect to this basis, the matrix representation for

IndGH V is

ρIndGH V (s) =

(
ζ 0
0 ζ−1

)
and ρIndGH V (t) =

(
0 1
1 0

)
1.2. Induction of C[H]-modules. We can rephrase induced representations in the lan-
guage of modules over group algebras. Recall that if H ⊂ G is a subgroup, then C[H] ⊂
C[G]. Then multiplication makes C[G] a C[H]-module.

Definition 1.12. Let M be a C[H]]-module, and consider the space HomC[H](C[G],M).
We define an action of C[G] on HomC[H](C[G],M) by setting (a · f)(b) = f(ba).

We check that with this C[G]-module structure, HomC[H](C[G],M) corresponds to the rep-

resentation of G on IndGHM :

Lemma 1.13. The map

IndGHM → HomC[H](C[G],M)

f 7→ (
∑
g∈G

λg[g] 7→
∑
g∈G

λgf(g)

is an isomorphism of C[G]-modules.
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Proof. To check that this map is C[G]-linear, it suffices to check that

[h] · f 7→

(∑
g∈G

λg[g] 7→
∑
g∈G

λgf(gh)

)
But ([h] · f)(g) = f(gh), so

[h] · f 7→

(∑
g∈G

λg[g] 7→
∑
g∈G

λg([h] · f)(g)

)
=

(∑
g∈G

λg[g] 7→
∑
g∈G

λgf(gh)

)
as desired.

We write down the inverse map

HomC[H](C[G],M)→ IndGHM

f 7→ (g 7→ f([g]))

so we have an isomorphism. �

Remark 1.14. If you know about tensor products of modules over non-commutative alge-
bras, here we are viewing M as a left C[H]-module and C[G]∗ as a right C[H]-module, and
we are taking the tensor product over C[H].

2. Characters

If (V, ρV ) is a representation of H, we wish to work out the character of the induced repre-
sentation (IndGH V, ρIndGH V ).

Proposition 2.1. Let g1, . . . , gs be representatives for the cosets of H. Then χIndGH V (g) =∑
i:gigg

−1
i ∈H

χV (gigg
−1
i ).

Proof. Corollary 1.9 shows that as a vector space, IndGH V
∼= ⊕iVgi , and Lemma 1.7 shows

that ρIndGH V (g) carries Vgi isomorphically to Vgig−1 for any g ∈ G. To compute the trace

of ρIndGH V (g), we only need to consider the gi such that Hgi = Hgig
−1, i.e., such that

gigg
−1
i ∈ H.

Suppose gigg
−1
i ∈ H. Then we use the fact that Vgi is isomorphic to V via ρIndGH V (g−1i ) :

Ve
∼−→ Vgi . That is, we have a commutative square

Vgi

ρ
IndG

H
V
(g)

// Vgi
ρ
IndG

H
V
(gi)

��
Ve

ρ
IndG

H
V
(gigg

−1
i )

//

ρ
IndG

H
V
(g−1

i )

OO

Ve

Thus, the trace of ρIndGH V (g) on Vgi is equal to the trace of ρIndGH V (gigg
−1
i ) on Ve. But since

Ve is isomorphic to V as a representation of H, this trace is χV (gigg
−1
i ).

Thus, we see that

Tr ρIndGH V (g) =
∑

i:gigg
−1
i ∈H

χV (gigg
−1
i )
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We can rewrite this formula slightly so as not to depend on our choice of coset representatives:

Corollary 2.2. χIndGH V (g) = 1
|H|
∑

g′∈G:g′gg′−1∈H χV (g′gg′−1)

Proof. If gigg
−1
i ∈ H, then so is (hgi)g(hgi)

−1 for h ∈ H. Thus, if we want the sum to run
over all elements of G, instead of the coset representatives, we need to divide by |H|. �

3. Frobenius reciprocity

We return to the setting of representations. Lemma 1.6 implies that if (V, ρV ) is a repre-
sentation of H, then ResGH IndGH V contains a subspace we denoted Ve, which is preserved
by ρIndGH V (h) for h ∈ H. Thus, Ve is a representation of H, and it is isomorphic to V as a

representation of H. Thus, there are H-linear maps V → IndGH V and IndGH V → V .

We can formulate this more generally:

Theorem 3.1 (Frobenius reciprocity). Let V be a representation of H and let W be a
representation of G. There is an isomorphism

Hom(W, IndGH V )G ∼= Hom(ResGHW,V )

Proof. Lemma 1.6 shows that there is a map IndGH V → V given by f 7→ f(e), and since
h · f 7→ (h · f)(e) = f(h) = ρV (h)f(e) for h ∈ H, this map is H-linear. Thus, if ϕ ∈
Hom(W, IndGH V )G, we see that

w 7→ (ϕ(w))(e) ∈ V
is an H-linear map, and so an element of Hom(ResGHW,V )H .

On the other hand, given ψ ∈ Hom(ResGHW,V )H , we define a map W → IndGH V via

w 7→ (g 7→ ψ(ρW (g)(w)))

(that is, we set e 7→ ψ(w) and rigged the rest so that the map was G-linear) �

Remark 3.2. The isomorphism of Frobenius reciprocity is usually stated as

Hom(IndGH V,W )G ∼= Hom(V,ResGHW )

The version we have stated holds because we are working with representations of finite
groups.

Corollary 3.3. There are natural maps W → IndGH ResGHW and ResGH IndGH V → V ; the
first is G-linear and the second is H-linear.

Proof. Take V := ResGHW ; the identity map ResGHW → ResGHW corresponds to a G-linear
map W → IndGH ResGHW .

Similarly, we may take W := IndGH V ; the identity map IndGH V → IndGH V corresponds to an
H-linear map ResGH IndGH V → V . �

Corollary 3.4. Let (V, ρV ) be a representation of H and let (W, ρW ) be a representation of
H. Then

〈χIndGH V , χW 〉 = 〈χV , χResGH W 〉
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3.1. Restrictions of induced representations. We wish to understand ResGH IndGH V as a
representation of H. For example, we know that there is an H-linear map ResGH IndGH V → V
(and in fact, Ve ⊂ ResGH IndGH V is a subrepresentation isomorphic to V ).

We consider the case where H C G is a normal subgroup of G. If H is not normal in G,
Mackey theory still gives an idea what happens, but it is more involved.

We again choose coset representatives g1, . . . , gs for H\G and we set Vgi ⊂ IndGH V to be the
subspace of f ∈ IndGH V with support in Hgi. Then as a vector space, IndGH V

∼= ⊕iVgi .
We know that ResGH IndGH V is never irreducible (unless H = G), because it has dimension
[G : H] dimV and contains a copy of V . We can say more:

Proposition 3.5. If H C G is a normal subgroup, then ρIndGH V (h) preserves Vgi for all

h ∈ H and each gi. Moreover, Vgi is isomorphic (as a vector space) to V ∼= Ve, and the
action of ρIndGH V (h) on Vgi is given by ρV (gihg

−1
i ).

Proof. Lemma 1.7 implies that ρIndGH V (h) carries Vgi isomorphically to Vgih−1 , and since

gihg
−1
i ∈ H (since H is normal in G), Vgih−1 = Vgi . The same lemma shows that we have a

commutative diagram

Vgi

ρ
IndG

H
V
(h)

// Vgi
ρ
IndG

H
V
(gi)

��
Ve

ρ
IndG

H
V
(gihg

−1
i )

//

ρ
IndG

H
V
(g−1

i )

OO

Ve

which gives the action of ρIndGH V (h) on Vgi . �

Observe that the map h 7→ gihg
−1
i is an automorphism of H. However, ρV (gihg

−1
i ) need not

be equivalent to ρV (h) as a matrix representation:

Example 3.6. Let G = D8 = 〈s, t : s4 = t2 = e, tst = s−1〉 and let H = C4 = 〈s : s4 =
e〉 ⊂ G. Let (V, ρV ) be a 1-dimensional representation of H, given by g 7→ ik for some
k ∈ {0, 1, 2, 3}. Let e, t be our coset representatives. Then ResGH IndGH V

∼= Ve ⊕ Vt, and s
acts on Vt via multiplication by ρV (tst) = ρV (s−1) = i−k. This is equal to ρV (s) if and only
if k ∈ {0, 2}. Otherwise, the matrix representation of H on ResGH IndGH V is equivalent to
( i 0
0 −i ).

It is not difficult to check that the 1-dimensional representations (V, ρV ) of H = C4 with
ρV (s) = ±i are exactly those such that IndGH V is irreducible. In fact, this is a general
phenomenon:

Proposition 3.7. Suppose that (V, ρV ) is an irreducible representation of H. Then the in-
duced representation IndGH V is irreducible if and only if none of the representations (Vgi , ρV (gihg

−1
i ))

for Hgi 6= H are isomorphic to (V, ρV ).
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Proof. Recall that IndGH V is irreducible if and only if 〈χIndGH V , χIndGH V 〉 = 1. To compute
this inner product, we use Frobenius reciprocity:

〈χIndGH V , χIndGH V 〉 = 〈χResGH IndGH V , χV 〉

=
∑
i

〈χVgi , χ〉

But 〈χVgi , χ〉 is 1 if Vgi
∼= V as a representation of H and 0 otherwise. �

Corollary 3.8. If (V, ρV ) is the trivial representation of H, IndGH V is reducible. In fact, it
is [G : H] copies of the trivial representation of G.

Proof. Lemma 1.6 says that Ve ∼= V as a representation of H, and Proposition 3.5 says that
the action of ρIndGH V (h) on Vgi is given by ρV (gihg

−1
i ). But since ρV : H → GL(V ) is trivial,

ρIndGH V (h) acts as the identity on Vgi for all i. �

Example 3.9. Recall that A4 ⊂ S4 has three 1-dimensional representations (Vk, ρk), given
by (1 2 3) 7→ ωk, where ω = e2πi/3 and k ∈ {0, 1, 2}. Let e and (1 2) be representatives for
the cosets of A4\S4, and consider IndS4

A4
Vi.

Then IndS4
A4
Vi ∼= Vk ⊕ Vk,(1 2) as a representation of A4, and A4 acts on Vk,(1 2) via

(1 2 3) 7→ ρk((1 2)(1 2 3)(1 2)) = ρk(1 3 2) = ρk(1 2 3)2

Thus, Vk,(1 2)
∼= Vk (as a representation of A4) if and only if ρk(1 2 3) = ρk(1 2 3)2, which is

the case if and only if ρk(1 2 3) = 1.

It follows that if k 6= 0, then IndS4
A4
Vk is the unique irreducible 2-dimensional representation

of S4.
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