M3/4/5P12: INDUCED REPRESENTATIONS

REBECCA BELLOVIN

1. DEFINITIONS AND PROPERTIES

1.1. Definition. Suppose G is a finite group and H C G is a subgroup. Then if (V, py)
is a representation of GG, we may restrict py : G — GL(V) to H to get a homomorphism
pv|m : H— GL(V). We denote this representation of H by (Res% V, pyv|r).

The theory of induced representations lets us go the other way: Given a representation
(W, pw) of H, Indg V' will denote the vector space underlying a representation of G.

The constructions we give are different from the “standard” constructions; we have done this
to avoid having to talk about tensor products of modules over non-commutative rings.

Definition 1.1. Let H C G be a subgroup and let (V, py) be a representation of H. Then
nd§ V= {f:G—V: f(hg) = py(h)f(g) for allh € H,g € G}

We define an action G x Ind% V' — Ind§ V by setting (g - f)(¢') = f(g'g), and we write
Pmag v for the associated representation.

Thus, Indg is the set of functions f : G — V which are equivariant for multiplication by H.

Now we fix coset representatives gi,...,gs € G, so that G =[], Hg,.

Lemma 1.2. If f € Ind§ V, then f is determined by its values on {g;};.

Proof. By definition, f(hg;) = pyv(h)f(g;). Since any element g € G can be written uniquely
in the form g = g;h, the set of values {f(g;)}; determines f. O

Example 1.3. Suppose H = {e} and (V, py) is the trivial representation. Then Ind?e} V=
1 ifg=h
0 ifg#h’

and G acts via

{f : G — V}, which has basis {0,}seq, where d,(h) = {
h . 5g - 5gh*1-

But we can define a map Ve — Ind{Ge} via by + dg-1. This is an isomorphism of vector
spaces, and

(preg(h)(bg)) = bhg = 59—1h—1 =h- 59—1
so it is G-linear. Thus, Ind{Ge} is naturally isomorphic to V;eg.

Proposition 1.4. Let (V, py) and (V' py:) be representations of H and let o : V — V' be

an H-linear map. Then there is a G-linear map Ind$; ¢ : Ind% V' — Ind% V',
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Proof. We may define Ind% ¢ by defining (Ind$ )(f)(g) == po f: G = V' for f € Ind% V.
Then

(IndG )(g" - f)(9) = (pog - [)(9) =¢(f(99)) = (¢ (¢o [))(g)

so Ind% o is G-linear. U

Definition 1.5. The support of a function f: G — V is the set {g € G : f(g) # 0}.

If f € Ind%V, then since f(hg) = py(h)f(g) for all h € H, g € G, if f(g) # 0 then
f(hg) # 0. Thus, the support of f is a union of right cosets.

If g € G, we define V, C Indg V' to be the subspace of functions f € Indfl V' whose support
is contained in Hyg.

Lemma 1.6. There is an H-linear isomorphism
ev:V,—>V
fe fle)
Proof. Observe that V., = {f : H — V : f(h) = py(h)f(e) for h € H}. Thus, f € V, is

determined by f(e) and any choice of f(e) € V determines an element of V.. Thus, we have
an isomorphism of vector spaces.

Furthermore,
Prag v (M) (f)(€) = fle-h) = f(h) = pv(h)[(e)

so the map is H-linear. 0

Lemma 1.7. For any g € G, pIndgV(g) : Ind$V — Ind$ V' carries V. isomorphically to
V-1, with inverse py,qc v(g™h). Consequently, Pinag v (9) carries Vy isomorphically to Virg-1.

Proof. Let f € V.. Then
(Pmag v(9)(N))(9) = f(d'9)
which is 0 unless ¢'g € H, or equivalently, unless ¢’ € Hg~'. Thus, (Prag v(9)(f)) € V1.

On the other hand, if f € V-1, then
(Praag v(9~ ) ()(G) = flg'g™")

which is 0 unless ¢'g~" € Hg™', or equivalently, unless ¢ € H. Thus, (prqe(9)(f)) €
V.. U

1
Corollary 1.8. Each subspace V,; C Indg V' is isomorphic (as a vector space) to V.

Corollary 1.9. We fiz a set of coset representatives gy, ...,qgs for HG. Then the natural
map

@V, — Ind§ vV
(fi) = Z fi

is an isomorphism. It follows that diimInd$ V =[G : H]dim V.
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f(g) ifgeHy
0 if g¢ Hy;
the map above. O

Proof. If f € Ind% V, we define f;(g) = { . Then f + (fi); is an inverse to

Example 1.10. Suppose (V, py) is the regular representation of H. Then we define a G-
linear map Vieg — Indfl V', where (Vieg, preg) is the regular representation of G, by sending

I VN by, ifg =hgtforhc H
g g 0 if ¢ ¢ Hg™!

In other words, we choose a function f : G — V which is 0 outside Hg~! and sends hg~! to
by,.

Example 1.11. For a more interesting example, consider G = Dy, = (s,t : s" = t* =
e,tst =s ')y and H=C, = (s:s" =€) C G. Then a 1-dimensional representation (V, py)
of H is given by g — (, where (" = 1. We compute Indg V.

Corollary 1.9 implies that Indg V' is 2-dimensional, and as a vector space Indg V=V.aeV,

where Ve and V; are 1-dimensional. Furthermore, Lemma 1.7 implies that py,qc v (s) preserves
V. and carries V; isomorphicallly to V;; = V;. We actually have a commutative diagram

P v(s)
Vi Vi
Pnd$ v(®) T ot lplndg v(®)
Pma§ v (tst)
e e

80 Praag v (s) + Vi — Vi acts via py(s™).

Thus, if we choose a basis vector v € V', we get a basis vector v" € V, and we may choose
a basis vector pp,qc 1 (¢)(v) € V;. With respect to this basis, the matrix representation for

Ind% V is
0 0 1
Pinas v (8) = <g Cl) and Praag v (1) = <1 0)

1.2. Induction of C[H]-modules. We can rephrase induced representations in the lan-
guage of modules over group algebras. Recall that if H C G is a subgroup, then C[H] C
C[G]. Then multiplication makes C[G] a C[H]-module.

Definition 1.12. Let M be a C[H]]-module, and consider the space Homgu)(C[G], M).
We define an action of C[G] on Homey)(C[G], M) by setting (a - f)(b) = f(ba).
We check that with this C[G]-module structure, Homex)(C[G], M) corresponds to the rep-
resentation of G' on Ind% M:
Lemma 1.13. The map
Ind$; M — Homgw(C[G], M)
[ (Z Aglg] Z)‘gf(g)
geG geG

is an isomorphism of C[G]-modules.



Proof. To check that this map is C[G]-linear, it suffices to check that

[h] - f (Z Aglg] Z /\gf(gh)>

But ([h] - f)(g) = f(gh), so

[h] - f = <Z Aglgl = D Ag([h]- f)(g)> = (Z Aglg] = Zkgf(gh)>

geG geG geG geG
as desired.
We write down the inverse map
Homgyy(C[G], M) — Indg M
[ (9= f(lg])

so we have an isomorphism. [l

Remark 1.14. If you know about tensor products of modules over non-commutative alge-
bras, here we are viewing M as a left C[H]-module and C[G]* as a right C[H]-module, and
we are taking the tensor product over C[H].

2. CHARACTERS

If (V,pv) is a representation of H, we wish to work out the character of the induced repre-
sentation (Ind$ V, PindS v )-

Proposition 2.1. Let g1, ..., g be representatives for the cosets of H. Then xp,q6 v (9) =
Zi:giggfleH xv(gi99; ).

Proof. Corollary 1.9 shows that as a vector space, Indfl V = ®;V,,, and Lemma 1.7 shows

that pyq¢ v (g) carries Vi, isomorphically to V.1 for any g € G. To compute the trace
of pIndgV(g), we only need to consider the ¢; such that Hg; = Hg;g~!, i.e., such that
9i99; " € H.

Suppose ¢;gg; ' € H. Then we use the fact that V,, is isomorphic to V via Pind vigh)

V. = V,.. That is, we have a commutative square

PrnaG v (9)

Vo — Vo,

(3

1 .
Pnd$ vig ) T ) lpmdg v(9i)
PinaG v(9i99; ")

Ve Ve

Thus, the trace of py4¢ (g) on Vy, is equal to the trace of pIndgV(giggi’l) on V.. But since
V, is isomorphic to V as a representation of H, this trace is xv(gigg; ')

Thus, we see that
Trpagv(9) = Y, xv(gigg ")

i:gigg;leH
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O

We can rewrite this formula slightly so as not to depend on our choice of coset representatives:

~1
Corollary 2.2. Xnd§ v(g) = |—I§| Zg/GG:Q,ggl—leg xv(9'g9 ™)

Proof. 1f g;gg;* € H, then so is (hg;)g(hg;)~* for h € H. Thus, if we want the sum to run
over all elements of G, instead of the coset representatives, we need to divide by |H]|. O

3. FROBENIUS RECIPROCITY

We return to the setting of representations. Lemma 1.6 implies that if (V| py) is a repre-
sentation of H, then Resg Indfl V' contains a subspace we denoted V,, which is preserved
by prag v(h) for h € H. Thus, V, is a representation of H, and it is isomorphic to V as a

representation of H. Thus, there are H-linear maps V — Indg V and Indg V—=V.
We can formulate this more generally:

Theorem 3.1 (Frobenius reciprocity). Let V' be a representation of H and let W be a
representation of G. There is an isomorphism

Hom (W, Ind% V)¢ = Hom(Res$ W, V)

Proof. Lemma 1.6 shows that there is a map Ind$ V' — V given by f — f(e), and since
h-fw— (h-f)le) = f(h) = pv(h)f(e) for h € H, this map is H-linear. Thus, if ¢ €
Hom (W, Ind% V)¢, we see that
w = (p(w))(e) €V
is an H-linear map, and so an element of Hom(Res% W, V).
On the other hand, given 1 € Hom(Res% W, V)¥ | we define a map W — Ind$, V via
w = (g = Y(pw(g)(w)))
(that is, we set e — 1(w) and rigged the rest so that the map was G-linear) O
Remark 3.2. The isomorphism of Frobenius reciprocity is usually stated as
Hom(Ind$ V, W)% = Hom(V, Res&, W)

The version we have stated holds because we are working with representations of finite
groups.

Corollary 3.3. There are natural maps W — Ind% Res$ W and Res§, IndG V — V; the
first is G-linear and the second is H-linear.

Proof. Take V := Resg W the identity map Resg W — Resg W corresponds to a G-linear
map W — Ind% Res% W,

Similarly, we may take W := Indg V'; the identity map Indg V — Indg V' corresponds to an
H-linear map Res% Ind% V — V. O

Corollary 3.4. Let (V, py) be a representation of H and let (W, py) be a representation of
H. Then

<X1ndg voxw) = (xv, XRes§, w)
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3.1. Restrictions of induced representations. We wish to understand Res% Ind$ V' as a
representation of H. For example, we know that there is an H-linear map Resg Indg V-V
(and in fact, V, C Res% Ind$ V is a subrepresentation isomorphic to V).

We consider the case where H <1 GG is a normal subgroup of G. If H is not normal in G,
Mackey theory still gives an idea what happens, but it is more involved.

We again choose coset representatives g¢i, ..., gs for H\G and we set V, C Ind% V to be the
subspace of f € Indg V' with support in Hg;. Then as a vector space, Indg V=V,

We know that Res% Ind% V is never irreducible (unless H = @), because it has dimension
|G : H)dim V' and contains a copy of V. We can say more:

Proposition 3.5. If H < G is a normal subgroup, then ppqc v (h) preserves V,, for all
H

h € H and each g;. Moreover, V,, is isomorphic (as a vector space) to V =2 V., and the

action of pyag v (h) on Vy, is given by pv(gihg; ).

Proof. Lemma 1.7 implies that plndgv(h) carries Vi, isomorphically to V-1, and since

gihg;' € H (since H is normal in G), V,,,-1 = V,,. The same lemma shows that we have a
commutative diagram

PrnaG v (h)
Vg, —— Vo,
PradC (gil)T lﬂnc (94)
md§ v plndgv(gihgfl) md§ v
Ve Ve
which gives the action of py,q¢ v (h) on Vg, O

Observe that the map h + g;hg; ' is an automorphism of H. However, py(g:hg; ') need not
be equivalent to py(h) as a matrix representation:

Example 3.6. Let G = Dg = (s,t : s* =t* = e,tst = s ') and let H =C; = (s : s* =
e) C G. Let (V,py) be a 1-dimensional representation of H, given by g + i* for some
k € {0,1,2,3}. Let e,t be our coset representatives. Then Res% Ind% V = V, @ V;, and s
acts on V; via multiplication by py (tst) = py(s~') = i~*. This is equal to py(s) if and only
if k € {0,2}. Otherwise, the matrix representation of H on Res% Ind% V is equivalent to

(6 2%)-

It is not difficult to check that the 1-dimensional representations (V,py) of H = Cy with
pv(s) = =£i are exactly those such that IndgV is irreducible. In fact, this is a general
phenomenon:

Proposition 3.7. Suppose that (V, py) is an irreducible representation of H. Then the in-
duced representation Ind$ V is irreducible if and only if none of the representations (Voo pv (gihg )

for Hg; # H are isomorphic to (V, py).
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Proof. Recall that Ind% V' is irreducible if and only if (Xtmag v+ Xmag v) = 1. To compute
this inner product, we use Frobenius reciprocity:

<X1ndg V) XInd§, v) = <XResg Ind§ V> Xv)
= (v, X)

But (ngi,x> is 1if V,, =V as a representation of H and 0 otherwise. U

Corollary 3.8. If (V, py) is the trivial representation of H, Indg V' s reducible. In fact, it
is [G : H] copies of the trivial representation of G.

Proof. Lemma 1.6 says that V, = V as a representation of H, and Proposition 3.5 says that
the action of py,qc(h) on Vj, is given by pv(gihg;"). But since py : H — GL(V) is trivial,
Pmac v (h) acts as the identity on V;, for all 4. O

Example 3.9. Recall that A, C Sy has three 1-dimensional representations (Vj, px), given
by (12 3) + w*, where w = ¢*/% and k € {0,1,2}. Let e and (1 2) be representatives for
the cosets of A4\S,, and consider Indi‘f1 V..

Then Indi‘f1 Vi 2 Vi, @ Vi1 2) as a representation of Ay, and Ay acts on Vi (1 9) via
(123) = pu((12)(123)(12)) = pe(132) = pu(1 2 3)°

Thus, Vi, 12) = Vi (as a representation of Ay) if and only if py(1 2 3) = pi(1 2 3)2, which is
the case if and only if p;(1 2 3) = 1.

It follows that if £ # 0, then Indi‘f1 Vi is the unique irreducible 2-dimensional representation
of S4.



