M3/4/5P12: INDUCED REPRESENTATIONS

REBECCA BELLOVIN

1. Definitions and properties

1.1. **Definition.** Suppose G is a finite group and $H \subset G$ is a subgroup. Then if (V, ρ_V) is a representation of G, we may restrict $\rho_V : G \to \operatorname{GL}(V)$ to H to get a homomorphism $\rho_V|_H : H \to \operatorname{GL}(V)$. We denote this representation of H by $(\operatorname{Res}_H^G V, \rho_V|_H)$.

The theory of induced representations lets us go the other way: Given a representation (W, ρ_W) of H, $\operatorname{Ind}_H^G V$ will denote the vector space underlying a representation of G.

The constructions we give are different from the "standard" constructions; we have done this to avoid having to talk about tensor products of modules over non-commutative rings.

Definition 1.1. Let $H \subset G$ be a subgroup and let (V, ρ_V) be a representation of H. Then

$$\operatorname{Ind}_{H}^{G} V := \{ f : G \to V : f(hg) = \rho_{V}(h)f(g) \text{ for all } h \in H, g \in G \}$$

We define an action $G \times \operatorname{Ind}_{H}^{G} V \to \operatorname{Ind}_{H}^{G} V$ by setting $(g \cdot f)(g') = f(g'g)$, and we write $\rho_{\operatorname{Ind}_{H}^{G} V}$ for the associated representation.

Thus, $\operatorname{Ind}_{H}^{G}$ is the set of functions $f: G \to V$ which are equivariant for multiplication by H. Now we fix coset representatives $g_1, \ldots, g_s \in G$, so that $G = \coprod_i Hg_i$.

Lemma 1.2. If $f \in \text{Ind}_H^G V$, then f is determined by its values on $\{g_i\}_i$.

Proof. By definition, $f(hg_i) = \rho_V(h)f(g_i)$. Since any element $g \in G$ can be written uniquely in the form $g = g_i h$, the set of values $\{f(g_i)\}_i$ determines f.

Example 1.3. Suppose $H = \{e\}$ and (V, ρ_V) is the trivial representation. Then $\operatorname{Ind}_{\{e\}}^G V = \{f : G \to V\}$, which has basis $\{\delta_g\}_{g \in G}$, where $\delta_g(h) = \begin{cases} 1 & \text{if } g = h \\ 0 & \text{if } g \neq h \end{cases}$, and G acts via $h \cdot \delta_g = \delta_{gh^{-1}}$.

But we can define a map $V_{\text{reg}} \to \text{Ind}_{\{e\}}^G$ via $b_g \mapsto \delta_{g^{-1}}$. This is an isomorphism of vector spaces, and

$$(\rho_{\operatorname{reg}}(h)(b_g)) = b_{hg} \mapsto \delta_{g^{-1}h^{-1}} = h \cdot \delta_{g^{-1}}$$

so it is G-linear. Thus, $\operatorname{Ind}_{\{e\}}^{G}$ is naturally isomorphic to V_{reg} .

Proposition 1.4. Let (V, ρ_V) and $(V', \rho_{V'})$ be representations of H and let $\varphi : V \to V'$ be an H-linear map. Then there is a G-linear map $\operatorname{Ind}_H^G \varphi : \operatorname{Ind}_H^G V \to \operatorname{Ind}_H^G V'$.

Proof. We may define $\operatorname{Ind}_{H}^{G} \varphi$ by defining $(\operatorname{Ind}_{H}^{G} \varphi)(f)(g) := \varphi \circ f : G \to V'$ for $f \in \operatorname{Ind}_{H}^{G} V$. Then

$$(\operatorname{Ind}_{H}^{G}\varphi)(g'\cdot f)(g) = (\varphi \circ g' \cdot f)(g) = \varphi(f(gg')) = (g' \cdot (\varphi \circ f))(g)$$

so $\operatorname{Ind}_{H}^{G} \varphi$ is *G*-linear.

Definition 1.5. The support of a function $f: G \to V$ is the set $\{g \in G : f(g) \neq 0\}$.

If $f \in \operatorname{Ind}_{H}^{G} V$, then since $f(hg) = \rho_{V}(h)f(g)$ for all $h \in H$, $g \in G$, if $f(g) \neq 0$ then $f(hg) \neq 0$. Thus, the support of f is a union of right cosets.

If $g \in G$, we define $V_g \subset \operatorname{Ind}_H^G V$ to be the subspace of functions $f \in \operatorname{Ind}_H^G V$ whose support is contained in Hg.

Lemma 1.6. There is an H-linear isomorphism

$$ev: V_e \to V$$
$$f \mapsto f(e)$$

Proof. Observe that $V_e = \{f : H \to V : f(h) = \rho_V(h)f(e) \text{ for } h \in H\}$. Thus, $f \in V_e$ is determined by f(e) and any choice of $f(e) \in V$ determines an element of V_e . Thus, we have an isomorphism of vector spaces.

Furthermore,

$$\rho_{\operatorname{Ind}_{H}^{G}V}(h)(f)(e) = f(e \cdot h) = f(h) = \rho_{V}(h)f(e)$$

so the map is H-linear.

Lemma 1.7. For any $g \in G$, $\rho_{\operatorname{Ind}_{H}^{G}V}(g) : \operatorname{Ind}_{H}^{G}V \to \operatorname{Ind}_{H}^{G}V$ carries V_{e} isomorphically to $V_{g^{-1}}$, with inverse $\rho_{\operatorname{Ind}_{H}^{G}V}(g^{-1})$. Consequently, $\rho_{\operatorname{Ind}_{H}^{G}V}(g)$ carries $V_{g'}$ isomorphically to $V_{g'g^{-1}}$.

Proof. Let $f \in V_e$. Then

$$(\rho_{\operatorname{Ind}_{H}^{G}V}(g)(f))(g') = f(g'g)$$

which is 0 unless $g'g \in H$, or equivalently, unless $g' \in Hg^{-1}$. Thus, $(\rho_{\operatorname{Ind}_H^G V}(g)(f)) \in V_{g^{-1}}$. On the other hand, if $f \in V_{q^{-1}}$, then

$$(\rho_{\mathrm{Ind}_H^G V}(g^{-1})(f))(g') = f(g'g^{-1})$$

which is 0 unless $g'g^{-1} \in Hg^{-1}$, or equivalently, unless $g' \in H$. Thus, $(\rho_{\operatorname{Ind}_{H}^{G}V}(g)(f)) \in V_{e}$.

Corollary 1.8. Each subspace $V_g \subset \operatorname{Ind}_H^G V$ is isomorphic (as a vector space) to V.

Corollary 1.9. We fix a set of coset representatives g_1, \ldots, g_s for HG. Then the natural map

is an isomorphism. It follows that dim $\operatorname{Ind}_{H}^{G} V = [G:H] \dim V$.

Proof. If $f \in \operatorname{Ind}_{H}^{G} V$, we define $f_{i}(g) = \begin{cases} f(g) & \text{if } g \in Hg_{i} \\ 0 & \text{if } g \notin Hg_{i} \end{cases}$. Then $f \mapsto (f_{i})_{i}$ is an inverse to

the map above.

Example 1.10. Suppose (V, ρ_V) is the regular representation of H. Then we define a Glinear map $V_{\text{reg}} \to \text{Ind}_H^G V$, where $(V_{\text{reg}}, \rho_{\text{reg}})$ is the regular representation of G, by sending

$$b_g \mapsto \left(g' \mapsto \begin{cases} b_h & \text{if } g' = hg^{-1} \text{ for } h \in H \\ 0 & \text{if } g' \notin Hg^{-1} \end{cases}\right)$$

In other words, we choose a function $f: G \to V$ which is 0 outside Hg^{-1} and sends hg^{-1} to b_h .

Example 1.11. For a more interesting example, consider $G = D_{2n} = \langle s, t : s^n = t^2 \rangle$ $e, tst = s^{-1}$ and $H = C_n = \langle s : s^n = e \rangle \subset G$. Then a 1-dimensional representation (V, ρ_V) of H is given by $g \mapsto \zeta$, where $\zeta^n = 1$. We compute $\operatorname{Ind}_H^G V$.

Corollary 1.9 implies that $\operatorname{Ind}_{H}^{G} V$ is 2-dimensional, and as a vector space $\operatorname{Ind}_{H}^{G} V \cong V_{e} \oplus V_{t}$, where V_e and V_t are 1-dimensional. Furthermore, Lemma 1.7 implies that $\rho_{\operatorname{Ind}_{H}^{G}V}(s)$ preserves V_e and carries V_t isomorphically to $V_{ts} = V_t$. We actually have a commutative diagram

$$\begin{array}{c|c} V_t & \stackrel{\rho_{\operatorname{Ind}_H^G V}(s)}{\longrightarrow} V_t \\ \rho_{\operatorname{Ind}_H^G V}(t) & & & & \downarrow^{\rho_{\operatorname{Ind}_H^G V}(tst)} \\ V_e & \stackrel{\rho_{\operatorname{Ind}_H^G V}(tst)}{\longrightarrow} V_e \end{array}$$

so $\rho_{\operatorname{Ind}_{H}^{G}V}(s): V_t \to V_t$ acts via $\rho_V(s^{-1})$.

Thus, if we choose a basis vector $v \in V$, we get a basis vector $v' \in V_e$ and we may choose a basis vector $\rho_{\operatorname{Ind}_{H}^{G}V}(t)(v') \in V_{t}$. With respect to this basis, the matrix representation for $\operatorname{Ind}_{H}^{G} V$ is

$$\rho_{\operatorname{Ind}_{H}^{G}V}(s) = \begin{pmatrix} \zeta & 0\\ 0 & \zeta^{-1} \end{pmatrix} \quad \text{and} \quad \rho_{\operatorname{Ind}_{H}^{G}V}(t) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

1.2. Induction of $\mathbf{C}[H]$ -modules. We can rephrase induced representations in the language of modules over group algebras. Recall that if $H \subset G$ is a subgroup, then $\mathbb{C}[H] \subset \mathbb{C}[H]$ $\mathbf{C}[G]$. Then multiplication makes $\mathbf{C}[G]$ a $\mathbf{C}[H]$ -module.

Definition 1.12. Let M be a $\mathbb{C}[H]$ -module, and consider the space $\operatorname{Hom}_{\mathbb{C}[H]}(\mathbb{C}[G], M)$. We define an action of $\mathbf{C}[G]$ on $\operatorname{Hom}_{\mathbf{C}[H]}(\mathbf{C}[G], M)$ by setting $(a \cdot f)(b) = f(ba)$.

We check that with this $\mathbf{C}[G]$ -module structure, $\operatorname{Hom}_{\mathbf{C}[H]}(\mathbf{C}[G], M)$ corresponds to the representation of G on $\operatorname{Ind}_{H}^{G} M$:

Lemma 1.13. The map

$$\operatorname{Ind}_{H}^{G} M \to \operatorname{Hom}_{\mathbf{C}[H]}(\mathbf{C}[G], M)$$
$$f \mapsto (\sum_{g \in G} \lambda_{g}[g] \mapsto \sum_{g \in G} \lambda_{g}f(g)$$

is an isomorphism of $\mathbf{C}[G]$ -modules.

Proof. To check that this map is $\mathbf{C}[G]$ -linear, it suffices to check that

$$[h] \cdot f \mapsto \left(\sum_{g \in G} \lambda_g[g] \mapsto \sum_{g \in G} \lambda_g f(gh) \right)$$

But $([h] \cdot f)(g) = f(gh)$, so

$$[h] \cdot f \mapsto \left(\sum_{g \in G} \lambda_g[g] \mapsto \sum_{g \in G} \lambda_g([h] \cdot f)(g) \right) = \left(\sum_{g \in G} \lambda_g[g] \mapsto \sum_{g \in G} \lambda_g f(gh) \right)$$

as desired.

We write down the inverse map

$$\operatorname{Hom}_{\mathbf{C}[H]}(\mathbf{C}[G], M) \to \operatorname{Ind}_{H}^{G} M$$
$$f \mapsto (g \mapsto f([g]))$$

so we have an isomorphism.

Remark 1.14. If you know about tensor products of modules over non-commutative algebras, here we are viewing M as a left $\mathbf{C}[H]$ -module and $\mathbf{C}[G]^*$ as a right $\mathbf{C}[H]$ -module, and we are taking the tensor product over $\mathbf{C}[H]$.

2. Characters

If (V, ρ_V) is a representation of H, we wish to work out the character of the induced representation $(\operatorname{Ind}_H^G V, \rho_{\operatorname{Ind}_H^G V})$.

Proposition 2.1. Let g_1, \ldots, g_s be representatives for the cosets of H. Then $\chi_{\operatorname{Ind}_H^G V}(g) = \sum_{i:g_igg_i^{-1} \in H} \chi_V(g_igg_i^{-1}).$

Proof. Corollary 1.9 shows that as a vector space, $\operatorname{Ind}_{H}^{G} V \cong \bigoplus_{i} V_{g_{i}}$, and Lemma 1.7 shows that $\rho_{\operatorname{Ind}_{H}^{G} V}(g)$ carries $V_{g_{i}}$ isomorphically to $V_{g_{i}g^{-1}}$ for any $g \in G$. To compute the trace of $\rho_{\operatorname{Ind}_{H}^{G} V}(g)$, we only need to consider the g_{i} such that $Hg_{i} = Hg_{i}g^{-1}$, i.e., such that $g_{i}gg_{i}^{-1} \in H$.

Suppose $g_i g g_i^{-1} \in H$. Then we use the fact that V_{g_i} is isomorphic to V via $\rho_{\operatorname{Ind}_H^G V}(g_i^{-1})$: $V_e \xrightarrow{\sim} V_{g_i}$. That is, we have a commutative square

$$\begin{array}{c} V_{g_i} \xrightarrow{\rho_{\operatorname{Ind}_H^G V}(g)} V_{g_i} \\ \xrightarrow{\rho_{\operatorname{Ind}_H^G V}(g_i^{-1})} & \swarrow \\ V_e \xrightarrow{\rho_{\operatorname{Ind}_H^G V}(g_i g g_i^{-1})} & \bigvee^{\rho_{\operatorname{Ind}_H^G V}(g_i)} \\ V_e \xrightarrow{\rho_{\operatorname{Ind}_H^G V}(g_i g g_i^{-1})} & V_e \end{array}$$

Thus, the trace of $\rho_{\operatorname{Ind}_{H}^{G}V}(g)$ on $V_{g_{i}}$ is equal to the trace of $\rho_{\operatorname{Ind}_{H}^{G}V}(g_{i}gg_{i}^{-1})$ on V_{e} . But since V_{e} is isomorphic to V as a representation of H, this trace is $\chi_{V}(g_{i}gg_{i}^{-1})$.

Thus, we see that

$$\operatorname{Tr} \rho_{\operatorname{Ind}_{H}^{G}V}(g) = \sum_{\substack{i:g_{i}gg_{i}^{-1} \in H \\ 4}} \chi_{V}(g_{i}gg_{i}^{-1})$$

We can rewrite this formula slightly so as not to depend on our choice of coset representatives:

Corollary 2.2. $\chi_{\text{Ind}_H^G V}(g) = \frac{1}{|H|} \sum_{g' \in G: g'gg'^{-1} \in H} \chi_V(g'gg'^{-1})$

Proof. If $g_i g g_i^{-1} \in H$, then so is $(hg_i)g(hg_i)^{-1}$ for $h \in H$. Thus, if we want the sum to run over all elements of G, instead of the coset representatives, we need to divide by |H|. \Box

3. FROBENIUS RECIPROCITY

We return to the setting of representations. Lemma 1.6 implies that if (V, ρ_V) is a representation of H, then $\operatorname{Res}_H^G \operatorname{Ind}_H^G V$ contains a subspace we denoted V_e , which is preserved by $\rho_{\operatorname{Ind}_H^G V}(h)$ for $h \in H$. Thus, V_e is a representation of H, and it is isomorphic to V as a representation of H. Thus, there are H-linear maps $V \to \operatorname{Ind}_H^G V$ and $\operatorname{Ind}_H^G V \to V$.

We can formulate this more generally:

Theorem 3.1 (Frobenius reciprocity). Let V be a representation of H and let W be a representation of G. There is an isomorphism

$$\operatorname{Hom}(W, \operatorname{Ind}_{H}^{G} V)^{G} \cong \operatorname{Hom}(\operatorname{Res}_{H}^{G} W, V)$$

Proof. Lemma 1.6 shows that there is a map $\operatorname{Ind}_{H}^{G} V \to V$ given by $f \mapsto f(e)$, and since $h \cdot f \mapsto (h \cdot f)(e) = f(h) = \rho_{V}(h)f(e)$ for $h \in H$, this map is *H*-linear. Thus, if $\varphi \in \operatorname{Hom}(W, \operatorname{Ind}_{H}^{G} V)^{G}$, we see that

$$w \mapsto (\varphi(w))(e) \in V$$

is an *H*-linear map, and so an element of $\operatorname{Hom}(\operatorname{Res}_{H}^{G} W, V)^{H}$.

On the other hand, given $\psi \in \operatorname{Hom}(\operatorname{Res}_{H}^{G}W, V)^{H}$, we define a map $W \to \operatorname{Ind}_{H}^{G}V$ via

$$w \mapsto (g \mapsto \psi(\rho_W(g)(w)))$$

(that is, we set $e \mapsto \psi(w)$ and rigged the rest so that the map was G-linear)

Remark 3.2. The isomorphism of Frobenius reciprocity is usually stated as

$$\operatorname{Hom}(\operatorname{Ind}_{H}^{G} V, W)^{G} \cong \operatorname{Hom}(V, \operatorname{Res}_{H}^{G} W)$$

The version we have stated holds because we are working with representations of finite groups.

Corollary 3.3. There are natural maps $W \to \operatorname{Ind}_{H}^{G} \operatorname{Res}_{H}^{G} W$ and $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V \to V$; the first is G-linear and the second is H-linear.

Proof. Take $V := \operatorname{Res}_{H}^{G} W$; the identity map $\operatorname{Res}_{H}^{G} W \to \operatorname{Res}_{H}^{G} W$ corresponds to a *G*-linear map $W \to \operatorname{Ind}_{H}^{G} \operatorname{Res}_{H}^{G} W$.

Similarly, we may take $W := \operatorname{Ind}_{H}^{G} V$; the identity map $\operatorname{Ind}_{H}^{G} V \to \operatorname{Ind}_{H}^{G} V$ corresponds to an H-linear map $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V \to V$.

Corollary 3.4. Let (V, ρ_V) be a representation of H and let (W, ρ_W) be a representation of H. Then

$$\langle \chi_{\mathrm{Ind}_{H}^{G}V}, \chi_{W} \rangle = \langle \chi_{V}, \chi_{\mathrm{Res}_{H}^{G}W} \rangle$$
5

3.1. Restrictions of induced representations. We wish to understand $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V$ as a representation of H. For example, we know that there is an H-linear map $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V \to V$ (and in fact, $V_{e} \subset \operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} V$ is a subrepresentation isomorphic to V).

We consider the case where $H \triangleleft G$ is a *normal* subgroup of G. If H is not normal in G, Mackey theory still gives an idea what happens, but it is more involved.

We again choose coset representatives g_1, \ldots, g_s for $H \setminus G$ and we set $V_{g_i} \subset \operatorname{Ind}_H^G V$ to be the subspace of $f \in \operatorname{Ind}_H^G V$ with support in Hg_i . Then as a vector space, $\operatorname{Ind}_H^G V \cong \bigoplus_i V_{g_i}$.

We know that $\operatorname{Res}_{H}^{G}\operatorname{Ind}_{H}^{G}V$ is never irreducible (unless H = G), because it has dimension $[G:H] \dim V$ and contains a copy of V. We can say more:

Proposition 3.5. If $H \triangleleft G$ is a normal subgroup, then $\rho_{\operatorname{Ind}_{H}^{G}V}(h)$ preserves V_{g_i} for all $h \in H$ and each g_i . Moreover, V_{g_i} is isomorphic (as a vector space) to $V \cong V_e$, and the action of $\rho_{\operatorname{Ind}_{H}^{G}V}(h)$ on V_{g_i} is given by $\rho_V(g_i h g_i^{-1})$.

Proof. Lemma 1.7 implies that $\rho_{\operatorname{Ind}_{H}^{G}V}(h)$ carries V_{g_i} isomorphically to $V_{g_ih^{-1}}$, and since $g_ihg_i^{-1} \in H$ (since H is normal in G), $V_{g_ih^{-1}} = V_{g_i}$. The same lemma shows that we have a commutative diagram

$$\begin{array}{c} V_{g_i} \xrightarrow{\rho_{\operatorname{Ind}_H^G V}(h)} V_{g_i} \\ \xrightarrow{\rho_{\operatorname{Ind}_H^G V}(g_i^{-1})} \bigwedge^{\uparrow} & \downarrow^{\rho_{\operatorname{Ind}_H^G V}(g_i h g_i^{-1})} & \bigvee^{\rho_{\operatorname{Ind}_H^G V}(g_i)} \\ V_e \xrightarrow{V_e} V_e \end{array}$$

which gives the action of $\rho_{\operatorname{Ind}_{H}^{G}V}(h)$ on $V_{g_{i}}$.

Observe that the map $h \mapsto g_i h g_i^{-1}$ is an automorphism of H. However, $\rho_V(g_i h g_i^{-1})$ need not be equivalent to $\rho_V(h)$ as a matrix representation:

Example 3.6. Let $G = D_8 = \langle s, t : s^4 = t^2 = e, tst = s^{-1} \rangle$ and let $H = C_4 = \langle s : s^4 = e \rangle \subset G$. Let (V, ρ_V) be a 1-dimensional representation of H, given by $g \mapsto i^k$ for some $k \in \{0, 1, 2, 3\}$. Let e, t be our coset representatives. Then $\operatorname{Res}_H^G \operatorname{Ind}_H^G V \cong V_e \oplus V_t$, and s acts on V_t via multiplication by $\rho_V(tst) = \rho_V(s^{-1}) = i^{-k}$. This is equal to $\rho_V(s)$ if and only if $k \in \{0, 2\}$. Otherwise, the matrix representation of H on $\operatorname{Res}_H^G \operatorname{Ind}_H^G V$ is equivalent to $\binom{i \ 0 \ 0 - i}{i}$.

It is not difficult to check that the 1-dimensional representations (V, ρ_V) of $H = C_4$ with $\rho_V(s) = \pm i$ are exactly those such that $\operatorname{Ind}_H^G V$ is irreducible. In fact, this is a general phenomenon:

Proposition 3.7. Suppose that (V, ρ_V) is an irreducible representation of H. Then the induced representation $\operatorname{Ind}_H^G V$ is irreducible if and only if none of the representations $(V_{g_i}, \rho_V(g_i h g_i^{-1}))$ for $Hg_i \neq H$ are isomorphic to (V, ρ_V) .

г	_	1
L		L
		L

Proof. Recall that $\operatorname{Ind}_{H}^{G} V$ is irreducible if and only if $\langle \chi_{\operatorname{Ind}_{H}^{G} V}, \chi_{\operatorname{Ind}_{H}^{G} V} \rangle = 1$. To compute this inner product, we use Frobenius reciprocity:

$$\begin{split} \langle \chi_{\mathrm{Ind}_{H}^{G}V}, \chi_{\mathrm{Ind}_{H}^{G}V} \rangle &= \langle \chi_{\mathrm{Res}_{H}^{G}\mathrm{Ind}_{H}^{G}V}, \chi_{V} \rangle \\ &= \sum_{i} \langle \chi_{V_{g_{i}}}, \chi \rangle \end{split}$$

But $\langle \chi_{V_{q_i}}, \chi \rangle$ is 1 if $V_{q_i} \cong V$ as a representation of H and 0 otherwise.

Corollary 3.8. If (V, ρ_V) is the trivial representation of H, $\operatorname{Ind}_H^G V$ is reducible. In fact, it is [G:H] copies of the trivial representation of G.

Proof. Lemma 1.6 says that $V_e \cong V$ as a representation of H, and Proposition 3.5 says that the action of $\rho_{\operatorname{Ind}_H^G V}(h)$ on V_{g_i} is given by $\rho_V(g_i h g_i^{-1})$. But since $\rho_V : H \to \operatorname{GL}(V)$ is trivial, $\rho_{\operatorname{Ind}_H^G V}(h)$ acts as the identity on V_{g_i} for all i.

Example 3.9. Recall that $A_4 \subset S_4$ has three 1-dimensional representations (V_k, ρ_k) , given by $(1 \ 2 \ 3) \mapsto \omega^k$, where $\omega = e^{2\pi i/3}$ and $k \in \{0, 1, 2\}$. Let e and $(1 \ 2)$ be representatives for the cosets of $A_4 \setminus S_4$, and consider $\operatorname{Ind}_{A_4}^{S_4} V_i$.

Then $\operatorname{Ind}_{A_4}^{S_4} V_i \cong V_k \oplus V_{k,(1\,2)}$ as a representation of A_4 , and A_4 acts on $V_{k,(1\,2)}$ via

$$(1\ 2\ 3) \mapsto \rho_k((1\ 2)(1\ 2\ 3)(1\ 2)) = \rho_k(1\ 3\ 2) = \rho_k(1\ 2\ 3)^2$$

Thus, $V_{k,(1\,2)} \cong V_k$ (as a representation of A_4) if and only if $\rho_k(1\,2\,3) = \rho_k(1\,2\,3)^2$, which is the case if and only if $\rho_k(1\,2\,3) = 1$.

It follows that if $k \neq 0$, then $\operatorname{Ind}_{A_4}^{S_4} V_k$ is the unique irreducible 2-dimensional representation of S_4 .